Your browser doesn't support javascript.
loading
Icariin enhances youth-like features by attenuating the declined gut microbiota in the aged mice.
Li, Xiaoang; Khan, Imran; Xia, Wenrui; Huang, Guoxin; Liu, Liang; Law, Betty Yuen Kwan; Yin, Lin; Liao, Weilin; Leong, Waikit; Han, Ruixuan; Wong, Vincent Kam Wai; Xia, Chenglai; Guo, Xiaoling; Hsiao, W L Wendy.
Affiliation
  • Li X; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China. Electronic address: eq121502@sina.com.
  • Khan I; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China. Electronic address: ikhan@must.edu.mo.
  • Xia W; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China. Electronic address: doctorsummer@126.com.
  • Huang G; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China. Electronic address: hgvxin@163.com.
  • Liu L; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China. Electronic address: lliu@must.edu.mo.
  • Law BYK; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China. Electronic address: lykbetty@gmail.com.
  • Yin L; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China. Electronic address: yinlin5634@qq.com.
  • Liao W; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China. Electronic address: 1209634007@qq.com.
  • Leong W; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China. Electronic address: sky7021111@hotmail.com.
  • Han R; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China. Electronic address: quietautumn1266@gmail.com.
  • Wong VKW; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China. Electronic address: kawwong@must.edu.mo.
  • Xia C; Foshan Maternal and Child Health Research Institute, Foshan Women and Children's Hospital Affiliated to Southern Medical University, Foshan 528000, China. Electronic address: xiachenglai@126.com.
  • Guo X; Foshan Maternal and Child Health Research Institute, Foshan Women and Children's Hospital Affiliated to Southern Medical University, Foshan 528000, China. Electronic address: fsguoxl@163.com.
  • Hsiao WLW; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China. Electronic address: wlhsiao@must.edu.mo.
Pharmacol Res ; 168: 105587, 2021 06.
Article in En | MEDLINE | ID: mdl-33798737
We previously reported the neuroprotective effects of icariin in rat cortical neurons. Here, we present a study on icariin's anti-aging effect in 24-month aged mice by treating them with a single daily dose of 100 mg/kg of icariin for 15 consecutive days. Icariin treatment improved motor coordination and learning skills while lowered oxidative stress biomarkers in the serum, brain, kidney, and liver of the aged mice. In addition, icariin improved the intestinal integrity of the aged mice by upregulating tight junction adhesion molecules and the Paneth and goblet cells, along with the reduction of iNOS and pro-inflammatory cytokines (IL-1ß, TNF-α, IL-2 and IL-6, and IL-12). Icariin treatments also significantly upregulated aging-related signaling molecules, Sirt 1, 3 & 6, Pot1α, BUB1b, FOXO1, Ep300, ANXA3, Calb1, SNAP25, and BDNF in old mice. Through gut microbiota (GM) analysis, we observed icariin-associated improvements in GM composition of aged mice by reinstating bacteria found in the young mice, while suppressing some bacteria found in the untreated old mice. To clarify whether icariin's anti-aging effect is rooted in the GM, we performed fecal microbiota transfer (FMT) from icariin-treated old mice to the old mice. FMT-recipients exhibited similar improvements in the rotarod score and age-related biomarkers as observed in the icariin-treated old mice. Equal or better improvement on the youth-like features was noticed when aged mice were FMT with feces from young mice. Our study shows that both direct treatments with icariin and fecal transplant from the icariin-treated aged mice produce similar anti-aging phenotypes in the aged mice. We prove that GM plays a pivotal role in the healing abilities of icariin. Icariin has the potentials to be developed as a medicine for the wellness of the aged adults.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Flavonoids / Aging / Gastrointestinal Microbiome Limits: Animals Language: En Journal: Pharmacol Res Journal subject: FARMACOLOGIA Year: 2021 Document type: Article Country of publication: Netherlands

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Flavonoids / Aging / Gastrointestinal Microbiome Limits: Animals Language: En Journal: Pharmacol Res Journal subject: FARMACOLOGIA Year: 2021 Document type: Article Country of publication: Netherlands