Your browser doesn't support javascript.
loading
The impact of sublethal permethrin exposure on susceptible and resistant genotypes of the urban disease vector Aedes aegypti.
Rigby, Lisa M; Johnson, Brian J; Peatey, Christopher L; Beebe, Nigel W; Devine, Gregor J.
Affiliation
  • Rigby LM; Australian Defence Force Malaria and Infectious Disease Institute, Gallipoli Barracks, Enoggera, QLD, Australia.
  • Johnson BJ; Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia.
  • Peatey CL; School of Medicine, University of Queensland, Brisbane, QLD, Australia.
  • Beebe NW; Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia.
  • Devine GJ; Australian Defence Force Malaria and Infectious Disease Institute, Gallipoli Barracks, Enoggera, QLD, Australia.
Pest Manag Sci ; 77(7): 3450-3457, 2021 Jul.
Article in En | MEDLINE | ID: mdl-33818874
BACKGROUND: In urban environments, some of the most common control tools used against the mosquito disease vector Aedes aegypti are pyrethroid insecticides applied as aerosols, fogs or residual sprays. Their efficacy is compromised by patchy deployment, aging residues, and the evolution and invasion of pyrethroid-resistant mosquitoes. A large proportion of mosquitoes in a given environment will therefore receive sublethal doses of insecticide. The potential impact of this sublethal exposure on the behaviour and biology of Ae. aegypti carrying commonly reported resistance alleles is poorly documented. RESULTS: In susceptible insects, sublethal exposure to permethrin resulted in reductions in egg viability (13.9%), blood avidity (16.7%) and male mating success (28.3%). It caused a 70% decrease in the lifespan of exposed susceptible females and a 66% decrease in the insecticide-resistant females from the parental strain. Exposure to the same dose of insecticide in the presence of the isolated kdr genotype resulted in a smaller impact on female longevity (a 58% decrease) but a 26% increase in eggs per female and a 37% increase in male mating success. Sublethal permethrin exposure reduced host-location success by 20-30% in all strains. CONCLUSION: The detrimental effects of exposure on susceptible insects were expected, but resistant insects demonstrated a less predictable range of responses, including negative effects on longevity and host-location but increases in fecundity and mating competitiveness. Overall, sublethal insecticide exposure is expected to increase the competitiveness of resistant phenotypes, acting as a selection pressure for the evolution of permethrin resistance. © 2021 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Pyrethrins / Aedes / Insecticides Limits: Animals Language: En Journal: Pest Manag Sci Journal subject: TOXICOLOGIA Year: 2021 Document type: Article Affiliation country: Australia Country of publication: United kingdom

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Pyrethrins / Aedes / Insecticides Limits: Animals Language: En Journal: Pest Manag Sci Journal subject: TOXICOLOGIA Year: 2021 Document type: Article Affiliation country: Australia Country of publication: United kingdom