Your browser doesn't support javascript.
loading
Interplay between electrochemical reactions and mechanical responses in silicon-graphite anodes and its impact on degradation.
Moon, Junhyuk; Lee, Heung Chan; Jung, Heechul; Wakita, Shinya; Cho, Sungnim; Yoon, Jaegu; Lee, Joowook; Ueda, Atsushi; Choi, Bokkyu; Lee, Sihyung; Ito, Kimihiko; Kubo, Yoshimi; Lim, Alan Christian; Seo, Jeong Gil; Yoo, Jungho; Lee, Seungyeon; Ham, Yongnam; Baek, Woonjoong; Ryu, Young-Gyoon; Han, In Taek.
Affiliation
  • Moon J; Samsung Advanced Institute of Technology, Suwon-si, Gyeonggi-do, Korea. jh.d.moon@samsung.com.
  • Lee HC; Samsung Advanced Institute of Technology, Suwon-si, Gyeonggi-do, Korea. hchan.lee@samsung.com.
  • Jung H; Samsung Advanced Institute of Technology, Suwon-si, Gyeonggi-do, Korea.
  • Wakita S; Department of Energy and Mineral Resources Engineering, Dong-A University, Bumin Campus, 225, Seo-gu, Busan, Korea.
  • Cho S; Samsung Advanced Institute of Technology, Suwon-si, Gyeonggi-do, Korea.
  • Yoon J; Samsung SDI, Suwon-si, Gyeonggi-do, Korea.
  • Lee J; Samsung Advanced Institute of Technology, Suwon-si, Gyeonggi-do, Korea.
  • Ueda A; Samsung SDI, Suwon-si, Gyeonggi-do, Korea.
  • Choi B; Samsung Advanced Institute of Technology, Suwon-si, Gyeonggi-do, Korea.
  • Lee S; Samsung SDI, Suwon-si, Gyeonggi-do, Korea.
  • Ito K; Samsung Advanced Institute of Technology, Suwon-si, Gyeonggi-do, Korea.
  • Kubo Y; Samsung SDI, Suwon-si, Gyeonggi-do, Korea.
  • Lim AC; Samsung Advanced Institute of Technology, Suwon-si, Gyeonggi-do, Korea.
  • Seo JG; Asahi Kasei Corporation, Fuji-shi, Shizuoka, Japan.
  • Yoo J; Samsung Advanced Institute of Technology, Suwon-si, Gyeonggi-do, Korea.
  • Lee S; Samsung SDI, Suwon-si, Gyeonggi-do, Korea.
  • Ham Y; Samsung Advanced Institute of Technology, Suwon-si, Gyeonggi-do, Korea.
  • Baek W; C4GR-GREEN, National Institute for Materials Science, Tsukuba, Ibaraki, Japan.
  • Ryu YG; C4GR-GREEN, National Institute for Materials Science, Tsukuba, Ibaraki, Japan.
  • Han IT; Department of Chemical Engineering, Hanyang University, Seongdong-gu, Seoul, Korea.
Nat Commun ; 12(1): 2714, 2021 May 11.
Article in En | MEDLINE | ID: mdl-33976126
ABSTRACT
Durability of high-energy throughput batteries is a prerequisite for electric vehicles to penetrate the market. Despite remarkable progresses in silicon anodes with high energy densities, rapid capacity fading of full cells with silicon-graphite anodes limits their use. In this work, we unveil degradation mechanisms such as Li+ crosstalk between silicon and graphite, consequent Li+ accumulation in silicon, and capacity depression of graphite due to silicon expansion. The active material properties, i.e. silicon particle size and graphite hardness, are then modified based on these results to reduce Li+ accumulation in silicon and the subsequent degradation of the active materials in the anode. Finally, the cycling performance is tailored by designing electrodes to regulate Li+ crosstalk. The resultant full cell with an areal capacity of 6 mAh cm-2 has a cycle life of >750 cycles the volumetric energy density of 800 Wh L-1 in a commercial cell format.

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Nat Commun Journal subject: BIOLOGIA / CIENCIA Year: 2021 Document type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Nat Commun Journal subject: BIOLOGIA / CIENCIA Year: 2021 Document type: Article