Your browser doesn't support javascript.
loading
A haemocyte-expressed Methyltransf_FA domain containing protein (MFCP) exhibiting microbe binding activity in oyster Crassostrea gigas.
Li, Jiaxin; Wang, Weilin; Zhao, Qi; Fan, Siqi; Li, Yan; Yuan, Pei; Wang, Lingling; Song, Linsheng.
Affiliation
  • Li J; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian
  • Wang W; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian
  • Zhao Q; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian
  • Fan S; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian
  • Li Y; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian
  • Yuan P; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian
  • Wang L; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Imm
  • Song L; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Imm
Dev Comp Immunol ; 122: 104137, 2021 09.
Article in En | MEDLINE | ID: mdl-34023375
The Methyltransf_FA domain is well-known as a key protein domain of enzyme synthesizing juvenile hormone, and Methyltransf_FA domain containing proteins (MFCPs) are widely existed in vertebrates and invertebrates. In the present study, a CgMFCP with a single Methyltransf_FA domain was screened from oyster Crassostrea gigas, and its open reading frame of CgMFCP was of 1128 bp, encoding a polypeptide of 376 amino acids with a signal peptide, a Methyltransf_FA domain and a transmembrane region. CgMFCP was clustered with FAMeTs from insecta and crustacea of arthropod. The mRNA transcripts of CgMFCP were detected in different tissues, with the extremely high expression level in haemocytes, which was 131.36-fold (p < 0.05) of that in gills. The expression level of CgMFCP protein was verified to be highly expressed in haemocytes. The expression level of CgMFCP mRNA in primarily cultured haemocytes significantly up-regulated at 3 h, 24 h and 48 h post LPS stimulation, which was 3.25-fold (p < 0.01), 2.04-fold (p < 0.05) and 3.59-fold (p < 0.01) compared to that in blank group. After the oysters were stimulated with Vibrio splendidus in vivo, the expression level of CgMFCP mRNA in haemocytes was also significantly up-regulated at 3 h, 12 h, and 24 h, which was 4.22-fold (p < 0.05), 4.39-fold (p < 0.05) and 6.35-fold (p < 0.01) of that in control group, respectively. By flow cytometry analysis, anti-rCgMFCP can label 95% of oyster haemocytes. And by fluorescence microscope analysis, CgMFCP was mainly distributed in cytomembrane of haemocytes. The recombinant CgMFCP (rCgMFCP) exhibited higher affinity towards MAN and LPS in a dose-dependent manner, while relatively lower affinity to PGN and poly (I:C). rCgMFCP also displayed binding activities towards Gram-negative bacteria (Vibrio anguillarum and V. splendidus), Gram-positive bacteria (Staphylococcu aureu) and fungi (Pichia pastoris). These results collectively indicated that CgMFCP specifically expressed in haemocytes and functioned as a pattern recognition receptor by binding to various microbes in oyster C. gigas, which provided insight into the function of Methyltransf_FA domain containing proteins.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Crassostrea / Receptors, Pattern Recognition / Hemocytes / Immunity, Innate / Methyltransferases Limits: Animals Language: En Journal: Dev Comp Immunol Year: 2021 Document type: Article Country of publication: United States

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Crassostrea / Receptors, Pattern Recognition / Hemocytes / Immunity, Innate / Methyltransferases Limits: Animals Language: En Journal: Dev Comp Immunol Year: 2021 Document type: Article Country of publication: United States