Your browser doesn't support javascript.
loading
Learning divisive normalization in primary visual cortex.
Burg, Max F; Cadena, Santiago A; Denfield, George H; Walker, Edgar Y; Tolias, Andreas S; Bethge, Matthias; Ecker, Alexander S.
Affiliation
  • Burg MF; Institute for Theoretical Physics and Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany.
  • Cadena SA; Bernstein Center for Computational Neuroscience, Tübingen, Germany.
  • Denfield GH; Institute of Computer Science and Campus Institute Data Science, University of Göttingen, Göttingen, Germany.
  • Walker EY; Institute for Theoretical Physics and Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany.
  • Tolias AS; Bernstein Center for Computational Neuroscience, Tübingen, Germany.
  • Bethge M; Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, Texas, United States of America.
  • Ecker AS; Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, Texas, United States of America.
PLoS Comput Biol ; 17(6): e1009028, 2021 06.
Article in En | MEDLINE | ID: mdl-34097695
Divisive normalization (DN) is a prominent computational building block in the brain that has been proposed as a canonical cortical operation. Numerous experimental studies have verified its importance for capturing nonlinear neural response properties to simple, artificial stimuli, and computational studies suggest that DN is also an important component for processing natural stimuli. However, we lack quantitative models of DN that are directly informed by measurements of spiking responses in the brain and applicable to arbitrary stimuli. Here, we propose a DN model that is applicable to arbitrary input images. We test its ability to predict how neurons in macaque primary visual cortex (V1) respond to natural images, with a focus on nonlinear response properties within the classical receptive field. Our model consists of one layer of subunits followed by learned orientation-specific DN. It outperforms linear-nonlinear and wavelet-based feature representations and makes a significant step towards the performance of state-of-the-art convolutional neural network (CNN) models. Unlike deep CNNs, our compact DN model offers a direct interpretation of the nature of normalization. By inspecting the learned normalization pool of our model, we gained insights into a long-standing question about the tuning properties of DN that update the current textbook description: we found that within the receptive field oriented features were normalized preferentially by features with similar orientation rather than non-specifically as currently assumed.
Subject(s)

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Visual Cortex / Learning Type of study: Prognostic_studies Limits: Animals Language: En Journal: PLoS Comput Biol Journal subject: BIOLOGIA / INFORMATICA MEDICA Year: 2021 Document type: Article Affiliation country: Germany Country of publication: United States

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Visual Cortex / Learning Type of study: Prognostic_studies Limits: Animals Language: En Journal: PLoS Comput Biol Journal subject: BIOLOGIA / INFORMATICA MEDICA Year: 2021 Document type: Article Affiliation country: Germany Country of publication: United States