Your browser doesn't support javascript.
loading
Exosomal MATN3 of Urine-Derived Stem Cells Ameliorates Intervertebral Disc Degeneration by Antisenescence Effects and Promotes NPC Proliferation and ECM Synthesis by Activating TGF-ß.
Guo, Zhu; Su, WeiLiang; Zhou, RongYao; Zhang, GuoQing; Yang, Shuai; Wu, XiaoLin; Qiu, ChenSheng; Cong, WenBin; Shen, Nana; Guo, JianWei; Liu, Chang; Yang, Shang-You; Xing, DongMing; Wang, Yan; Chen, BoHua; Xiang, HongFei.
Affiliation
  • Guo Z; Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, China 266003.
  • Su W; Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, China 266003.
  • Zhou R; Department of Orthopaedics, DongChangFu People's Hospital, Liaocheng, China 252000.
  • Zhang G; Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, China 266003.
  • Yang S; Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, China 266003.
  • Wu X; Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, China 266003.
  • Qiu C; Department of Orthopedics, Qingdao Municipal Hospital, Qingdao, China 266011.
  • Cong W; Radiology Department, The Affiliated Hospital of Qingdao University, Qingdao, China 266003.
  • Shen N; Department of Rehabilitation, The Affiliated Hospital of Qingdao University, Qingdao, China 266003.
  • Guo J; Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, China 266003.
  • Liu C; Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, China 266003.
  • Yang SY; University of Kansas, School of Medicine-Wichita, 929 N St. Francis Street, Wichita, KS, USA 67230.
  • Xing D; School of Life Sciences, Tsinghua University, Beijing, China 100084.
  • Wang Y; Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, China 266003.
  • Chen B; Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, China 266003.
  • Xiang H; Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, China 266003.
Oxid Med Cell Longev ; 2021: 5542241, 2021.
Article in En | MEDLINE | ID: mdl-34136064
ABSTRACT

OBJECTIVE:

Low back pain (LBP) is one of the top three causes of disability in developed countries, and intervertebral disc degeneration (IDD) is a major contributor to LBP. In the process of IDD, there is a gradual decrease in nucleus pulposus cells (NPCs) and extracellular matrix (ECM). Exosomes are important exocrine mediators of stem cells that can act directly on cells for tissue repair and regeneration. In this study, we determined the antisenescence, cell proliferation promotion, and ECM modulation effects of human urine-derived stem cell (USC) exosomes (USC-exos) on degenerated intervertebral discs and explored the underlying mechanism. METHODS AND MATERIALS USCs were identified by multipotent differentiation and flow cytometry for mesenchymal stem cell- (MSC-) specific surface protein markers. USC-exos were isolated from the conditioned medium of USCs by ultracentrifugation and then analyzed by transmission electron microscopy (TEM), particle size analysis, and western blotting (WB) for exosome marker proteins. The effects of USC-exos on NPC proliferation and ECM synthesis were assessed by Cell Counting Kit-8 (CCK-8), WB, and immunofluorescence (IF) analyses. The protein differences between normal and degenerative intervertebral discs were mined, and the temporal and spatial variations in matrilin-3 (MATN3) content were determined by WB and IF in the intervertebral disc tissues. The candidate molecules that mediated the function of USC-exos were screened out and confirmed by multiple assays. Meanwhile, the mechanism underlying the candidate protein in USC-exos-induced cell proliferation and regulation of ECM synthesis promoting the activities of NPCs was explored. In addition, the effects of USC-exos on ameliorating intervertebral disc degeneration (IVD) in mice were examined by assessing computed tomography (CT), magnetic resonance imaging (MRI), and histological analyses.

RESULTS:

The flow cytometry results showed that USCs were positive for CD29, CD44, and CD73, which are USC surface-specific markers, but negative for CD34 and CD45. In addition, USCs showed osteogenic, adipogenic, and chondrogenic differentiation potential. USC-exos exhibited a cup-shaped morphology, with a mean diameter of 49.7 ± 7.3 nm, and were positive for CD63 and TSG101 and negative for calnexin. USC-exos could promote NPC proliferation and ECM synthesis. The protein content of the matrilin family was significantly reduced in degenerative intervertebral discs, and the decrease in MATN3 was the most significant. USC-exos were found to be rich in MATN3 protein, and exosomal MATN3 was required for USC-exos-induced promotion of NPC proliferation and ECM synthesis, as well as alleviation of intervertebral disc degeneration in IVD rats. In addition, the effects of MATN3 in USC-exos were demonstrated to be achieved by activating TGF-ß, which elevated the phosphorylation level of SMAD and AKT.

CONCLUSIONS:

Our study suggests that reduced MATN3 can be considered a characteristic of intervertebral disc degeneration. USC-exos may represent a potentially effective agent for alleviating intervertebral disc degeneration by promoting NPC proliferation and ECM synthesis by transferring the MATN3 protein.
Subject(s)

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Stem Cells / Transforming Growth Factor beta / Low Back Pain / Exosomes / Intervertebral Disc Degeneration Type of study: Prognostic_studies Limits: Adult / Humans Language: En Journal: Oxid Med Cell Longev Journal subject: METABOLISMO Year: 2021 Document type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Stem Cells / Transforming Growth Factor beta / Low Back Pain / Exosomes / Intervertebral Disc Degeneration Type of study: Prognostic_studies Limits: Adult / Humans Language: En Journal: Oxid Med Cell Longev Journal subject: METABOLISMO Year: 2021 Document type: Article