Your browser doesn't support javascript.
loading
Multi-omics Study of Planobispora rosea, Producer of the Thiopeptide Antibiotic GE2270A.
Del Carratore, Francesco; Iorio, Marianna; Pérez-Bonilla, Mercedes; Schmidt, Kamila; Pérez-Redondo, Rosario; Sosio, Margherita; Macdonald, Sandy J; Gyulev, Ivan S; Tsigkinopoulou, Areti; Thomas, Gavin H; Genilloud, Olga; Rodríguez-García, Antonio; Donadio, Stefano; Breitling, Rainer; Takano, Eriko.
Affiliation
  • Del Carratore F; Manchester Institute of Biotechnology, Faculty of Science and Engineering, University of Manchester, Manchester, United Kingdom.
  • Iorio M; NAICONS Srl, Milan, Italy.
  • Pérez-Bonilla M; Fundación MEDINA, Parque Tecnológico Ciencias de la Salud, Granada, Spain.
  • Schmidt K; Manchester Institute of Biotechnology, Faculty of Science and Engineering, University of Manchester, Manchester, United Kingdom.
  • Pérez-Redondo R; INBIOTEC Instituto de Biotecnología de León, León, Spain.
  • Sosio M; NAICONS Srl, Milan, Italy.
  • Macdonald SJ; Department of Biology, University of Yorkgrid.5685.e, Heslington, York, United Kingdom.
  • Gyulev IS; Department of Biology, University of Yorkgrid.5685.e, Heslington, York, United Kingdom.
  • Tsigkinopoulou A; Manchester Institute of Biotechnology, Faculty of Science and Engineering, University of Manchester, Manchester, United Kingdom.
  • Thomas GH; DTU Biosustain, Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark.
  • Genilloud O; Department of Biology, University of Yorkgrid.5685.e, Heslington, York, United Kingdom.
  • Rodríguez-García A; Fundación MEDINA, Parque Tecnológico Ciencias de la Salud, Granada, Spain.
  • Donadio S; INBIOTEC Instituto de Biotecnología de León, León, Spain.
  • Breitling R; NAICONS Srl, Milan, Italy.
  • Takano E; Manchester Institute of Biotechnology, Faculty of Science and Engineering, University of Manchester, Manchester, United Kingdom.
mSystems ; 6(3): e0034121, 2021 Jun 29.
Article in En | MEDLINE | ID: mdl-34156292
ABSTRACT
Planobispora rosea is the natural producer of the potent thiopeptide antibiotic GE2270A. Here, we present the results of a metabolomics and transcriptomics analysis of P. rosea during production of GE2270A. The data generated provides useful insights into the biology of this genetically intractable bacterium. We characterize the details of the shutdown of protein biosynthesis and the respiratory chain associated with the end of the exponential growth phase. We also provide the first description of the phosphate regulon in P. rosea. Based on the transcriptomics data, we show that both phosphate and iron are limiting P. rosea growth in our experimental conditions. Additionally, we identified and validated a new biosynthetic gene cluster associated with the production of the siderophores benarthin and dibenarthin in P. rosea. Together, the metabolomics and transcriptomics data are used to inform and refine the very first genome-scale metabolic model for P. rosea, which will be a valuable framework for the interpretation of future studies of the biology of this interesting but poorly characterized species. IMPORTANCE Planobispora rosea is a genetically intractable bacterium used for the production of GE2270A on an industrial scale. GE2270A is a potent thiopeptide antibiotic currently used as a precursor for the synthesis of two compounds under clinical studies for the treatment of Clostridium difficile infection and acne. Here, we present the very first systematic multi-omics investigation of this important bacterium, which provides a much-needed detailed picture of the dynamics of metabolism of P. rosea while producing GE2270A.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: MSystems Year: 2021 Document type: Article Affiliation country: United kingdom

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: MSystems Year: 2021 Document type: Article Affiliation country: United kingdom