Your browser doesn't support javascript.
loading
Blockade of CD73 using siRNA loaded chitosan lactate nanoparticles functionalized with TAT-hyaluronate enhances doxorubicin mediated cytotoxicity in cancer cells both in vitro and in vivo.
Salehi Khesht, Armin Mahmoud; Karpisheh, Vahid; Sahami Gilan, Parisa; Melnikova, Lyubov A; Olegovna Zekiy, Angelina; Mohammadi, Mahdis; Hojjat-Farsangi, Mohammad; Majidi Zolbanin, Naime; Mahmoodpoor, Ata; Hassannia, Hadi; Aghebati-Maleki, Leili; Jafari, Reza; Jadidi-Niaragh, Farhad.
Affiliation
  • Salehi Khesht AM; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biochemistry, Faculty of Materials Engineering, Islamic Azad University, Najafabad Branch, Najafabad, Iran.
  • Karpisheh V; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.
  • Sahami Gilan P; Medical Biology Research Center, Health Technologies Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
  • Melnikova LA; Finance University under the Government of the Russian Federation, Moscow, Russian Federation.
  • Olegovna Zekiy A; Department of Prosthetic Dentistry, Sechenov First Moscow State Medical University, Moscow, Russia.
  • Mohammadi M; Department of Biology, Faculty of Sciences, Golestan University, Gorgan, Iran.
  • Hojjat-Farsangi M; Bioclinicum, Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden.
  • Majidi Zolbanin N; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran; Experimental and Applied Pharmaceutical Sciences Research Center, Urmia University of Medical Sciences, Urmia, Iran.
  • Mahmoodpoor A; Department of Anesthesiology, School of Medicine, Imam Reza Medical Research & Training Hospital, Tabriz University of Medical Sciences, Tabriz, Iran.
  • Hassannia H; Immunogenetic Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
  • Aghebati-Maleki L; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
  • Jafari R; Solid Tumor Research Center, Cellular and Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran. Electronic address: jafari.reza@umsu.ac.ir.
  • Jadidi-Niaragh F; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran. Electronic address: jadidif@tbzmed.ac.ir.
Int J Biol Macromol ; 186: 849-863, 2021 Sep 01.
Article in En | MEDLINE | ID: mdl-34245737
ABSTRACT
Chemotherapy drugs are still one of the first treatment options used in many cancers; however, problems such as cytotoxic side effects on normal cells after systemic administration and resistance to treatment have reduced the use of chemotherapeutics day by day. Targeted delivery of these drugs to the tumor site and sensitization of cancer cells to death induced by chemotherapy drugs are ways that can overcome the limitations of the use of these drugs. In this study, we designed and generated a novel nanocarrier composed of chitosan lactate nanoparticles (NPs) functionalized by HIV-1 derived TAT peptide (Transactivating transcriptional activator) and hyaluronate (HA) to deliver CD73 siRNA and doxorubicin to 4T1 and CT26 cancer cells, both in vivo and in vitro, as a novel combinatorial treatment strategy. The CD73 molecule plays a key role in many cancer cell behaviors such as proliferation, angiogenesis, metastasis, imunosuppression, and resistance to chemotherapy. Therefore, we decided to reduce the side effects of DOX by simultaneously transmitting CD73 siRNA and DOX by CL-TAT-HA NPs, increase the susceptibility of cancer cells to DOX-induced cell death, and stimulate anti-tumor immune responses, for the first time. These results indicated that simultaneous transfer of CD73 siRNA and DOX to cancer cells (4 T1 and CT26) increased cell death and inhibited the prolifration and spread of cancer cells. Also, the preferential aggregation of NPs in the tumor microenvironment reduced tumor growh, promoted the survival of tumor-bearing mice, and induced anti-tumor immune responses. These findings indicate that CL-TAT-HA NPs are a good candidate for targeted siRNA/drug delivery to cancer cells and the simultaneous transfer of CD73 siRNA and DOX to cancer cells using this nanocarrier can be used to treat cancer.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Breast Neoplasms / Colorectal Neoplasms / Doxorubicin / 5'-Nucleotidase / RNA, Small Interfering / Chitosan / Tat Gene Products, Human Immunodeficiency Virus / RNAi Therapeutics / Hyaluronic Acid / Lactates Limits: Animals Language: En Journal: Int J Biol Macromol Year: 2021 Document type: Article Affiliation country: Iran

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Breast Neoplasms / Colorectal Neoplasms / Doxorubicin / 5'-Nucleotidase / RNA, Small Interfering / Chitosan / Tat Gene Products, Human Immunodeficiency Virus / RNAi Therapeutics / Hyaluronic Acid / Lactates Limits: Animals Language: En Journal: Int J Biol Macromol Year: 2021 Document type: Article Affiliation country: Iran