Engineered Biomimetic Nanoplatform Protects the Myocardium Against Ischemia/Reperfusion Injury by Inhibiting Pyroptosis.
ACS Appl Mater Interfaces
; 13(29): 33756-33766, 2021 Jul 28.
Article
in En
| MEDLINE
| ID: mdl-34258997
Protection of cardiomyocytes against oxidative stress is vital to alleviate myocardial ischemia/reperfusion injury (MI/RI). However, antioxidative treatment is hampered by the lack of safe and effective therapeutics. Polydopamine (PDA), as a biodegradable class of nanomaterial with excellent antioxidant properties, has shown great potential in treating MI/RI. To achieve site-specific antioxidative efficacy, we established a PDA-based biomimetic nanoplatform (PDA@M), which consisted of a polydopamine core and a macrophage membrane shell to form a shell-core structure. By inheriting the inherent migration capability of macrophages, PDA@M was able to target the infarcted myocardium and exert an antioxidative effect to protect the myocardium. The results demonstrated that the accumulation of the membrane-wrapped nanoparticles (NPs) in the infarcted myocardium was greatly increased as compared with PDA alone, which effectively relieved the MI/RI-induced oxidative stress. PDA@M largely decreased the infarct size and improved the cardiac function post-MI/RI. Our study revealed that PDA@M could inhibit cell pyroptosis by suppressing the NLRP3/caspase-1 pathway, which is known to play a significant role in the antioxidant signaling pathway. In summary, PDA@M can target the infarcted myocardium and exert antioxidative and antipyroptosis functions to protect the myocardium against MI/RI-induced oxidative stress, suggesting that it may prove to be a potential therapeutic agent for MI/RI.
Key words
Full text:
1
Collection:
01-internacional
Database:
MEDLINE
Main subject:
Polymers
/
Myocardial Reperfusion Injury
/
Nanoparticles
/
Pyroptosis
/
Heart
/
Indoles
/
Antioxidants
Limits:
Animals
Language:
En
Journal:
ACS Appl Mater Interfaces
Journal subject:
BIOTECNOLOGIA
/
ENGENHARIA BIOMEDICA
Year:
2021
Document type:
Article
Affiliation country:
China
Country of publication:
United States