Your browser doesn't support javascript.
loading
A Computationally Efficient Approach to Segmentation of the Aorta and Coronary Arteries Using Deep Learning.
Cheung, Wing Keung; Bell, Robert; Nair, Arjun; Menezes, Leon J; Patel, Riyaz; Wan, Simon; Chou, Kacy; Chen, Jiahang; Torii, Ryo; Davies, Rhodri H; Moon, James C; Alexander, Daniel C; Jacob, Joseph.
Affiliation
  • Cheung WK; Centre for Medical Image ComputingUniversity College London London WC1V 6LJ U.K.
  • Bell R; Department of Computer ScienceUniversity College London London WC1V 6LJ U.K.
  • Nair A; Hatter Cardiovascular Institute, University College London London WC1V 6LJ U.K.
  • Menezes LJ; Department of RadiologyUniversity College London Hospital London NW1 2BU U.K.
  • Patel R; Institute of Nuclear Medicine, University College London London WC1V 6LJ U.K.
  • Wan S; Institute of Cardiovascular Science, University College London London WC1V 6LJ U.K.
  • Chou K; Institute of Nuclear Medicine, University College London London WC1V 6LJ U.K.
  • Chen J; Centre for Medical Image ComputingUniversity College London London WC1V 6LJ U.K.
  • Torii R; Department of Computer ScienceUniversity College London London WC1V 6LJ U.K.
  • Davies RH; Department of Mechanical EngineeringUniversity College London London WC1E 7JE U.K.
  • Moon JC; Department of Mechanical EngineeringUniversity College London London WC1E 7JE U.K.
  • Alexander DC; Institute of Cardiovascular Science, University College London London WC1V 6LJ U.K.
  • Jacob J; Barts Heart Centre London EC1A 7BE U.K.
IEEE Access ; 9: 108873-108888, 2021.
Article in En | MEDLINE | ID: mdl-34395149
ABSTRACT
Early detection and diagnosis of coronary artery disease could reduce the risk of developing a heart attack. The coronary arteries are optimally visualised using computed tomography coronary angiography (CTCA) imaging. These images are reviewed by specialist radiologists who evaluate the coronary arteries for potential narrowing. A lack of radiologists in the UK is a constraint to timely diagnosis of coronary artery disease, particularly in the acute accident and emergency department setting. The development of automated methods by which coronary artery narrowing can be identified rapidly and accurately are therefore timely. Such complex computer based tools also need to be sufficiently computationally efficient that they can run on servers typically found in hospital settings, where graphical processing units for example are unavailable. We propose a fully automatic two-dimensional Unet model to segment the aorta and coronary arteries on CTCA images. Two models are trained to segment two regions of interest, (1) the aorta and the coronary arteries or (2) the coronary arteries alone. Our method achieves 91.20% and 88.80% dice similarity coefficient accuracy on regions of interest 1 and 2 respectively. Compared with a semi-automatic segmentation method, our model performs better when segmenting the coronary arteries alone. The performance of the proposed method is comparable to existing published two-dimensional or three-dimensional deep learning models. Importantly, the algorithmic and graphical processing unit memory efficiencies are maintained such that the model can be deployed without requiring graphical processing units, and therefore can be used in a hospital setting.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Type of study: Screening_studies Language: En Journal: IEEE Access Year: 2021 Document type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Type of study: Screening_studies Language: En Journal: IEEE Access Year: 2021 Document type: Article