Your browser doesn't support javascript.
loading
Theoretical insights into the adsorption mechanism of Cd(II) on the basal surfaces of kaolinite.
Chen, Guobo; Zhao, Haizhou; Li, Xia; Xia, Shuwei.
Affiliation
  • Chen G; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266003, China.
  • Zhao H; Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266003, China; Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China.
  • Li X; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266003, China. Electronic address: xiali@ouc.edu.cn.
  • Xia S; Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266003, China; Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China. Electronic address: shuwei
J Hazard Mater ; 422: 126795, 2022 Jan 15.
Article in En | MEDLINE | ID: mdl-34399208
ABSTRACT
Retardation of Cd(II) migration is an ongoing concern for environmental remediation, but a prevalent obstacle of the procedure originates from the lack of an atomic-scale description of the inherent mechanism for Cd(II) adsorption at mineral-water interfaces. Herein, we performed first-principles calculations and ab initio molecular dynamics (AIMD) simulations to explore the adsorption mechanism of Cd(II) on the basal surfaces of kaolinite. Representative monodentate and bidentate Cd(II) complexes were constructed on the Kln-Al(001) and Kln-Si(001̅) surfaces. The results showed that bidentate coordination of Cd(II) on the Kln-Al(001) surface was superior to all other studied models due to the favorable formation energy and better agreement with EXAFS data. The calculated electron density difference revealed the charge transfer from surface oxygen (Os) to Cd(II) upon adsorption. In particular, partial density of states (PDOS) analysis indicated that the Cd-Os bond exhibited covalent characteristics, attributed to the overlaps of Cd-5p and Os-2p orbitals in the valence band. Furthermore, radial distribution functions supported by AIMD simulations were employed to confirm the structural features of Cd(II) coordination shell at kaolinite-water interfaces. This theoretical study provides insightful guidance for future Cd(II) research to improve current assessments of contaminant remediation.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Type of study: Prognostic_studies Language: En Journal: J Hazard Mater Journal subject: SAUDE AMBIENTAL Year: 2022 Document type: Article Affiliation country: China

Full text: 1 Collection: 01-internacional Database: MEDLINE Type of study: Prognostic_studies Language: En Journal: J Hazard Mater Journal subject: SAUDE AMBIENTAL Year: 2022 Document type: Article Affiliation country: China