Your browser doesn't support javascript.
loading
Synthesis, anti-diabetic and in silico QSAR analysis of flavone hydrazide Schiff base derivatives.
Jamil, Waqas; Shaikh, Javeria; Yousuf, Maria; Taha, Muhammad; Khan, Khalid Mohammed; Shah, Syed Adnan Ali.
Affiliation
  • Jamil W; Institute of Advance Research Studies in Chemical Sciences, University of Sindh Jamshoro, Hyderabad, Pakistan.
  • Shaikh J; Institute of Advance Research Studies in Chemical Sciences, University of Sindh Jamshoro, Hyderabad, Pakistan.
  • Yousuf M; Dow College of Biotechnology, Department of Bioinformatics, Dow University of Health Sciences, Karachi, Pakistan.
  • Taha M; Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia.
  • Khan KM; Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia.
  • Shah SAA; H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan.
J Biomol Struct Dyn ; 40(23): 12723-12738, 2022.
Article in En | MEDLINE | ID: mdl-34514955
This study reports synthesis of flavone hydrazide Schiff base derivatives with diverse functionalities for the cure of diabetic mellitus and their a-glucosidase inhibitor and in silico studies. In this regard, Flavone derivatives 1-20 has synthesized and characterized by various spectroscopic techniques. These compounds showed significant potential towards a-glucosidase enzyme inhibition activity and found to be many fold better active than the standard Acarbose (IC50 = 39.45 ± 0.11 µM). The IC50values ranges 1.02-38.1 µM. Among these, compounds 1(IC50 = 4.6 ± 0.23 µM), 2(IC50 = 1.02 ± 0.2 µM), 3(IC50 = 7.1 ± 0.11 µM), 4(IC50 = 8.3 ± 0.34 µM), 5(IC50 = 7.4 ± 0.15 µM), 6(IC50 = 8.5 ± 0.27 µM) and 18 (IC50 = 1.09 ± 0.26 µM) showed highest activity. It was revealed that the analogues having -OH substitution have higher activity than their look likes. The molecular docking analysis revealed that these molecules have high potential to interact with the protein molecule and have high ability to bind with the enzyme. Furthermore, in silico pharmacokinetics, physicochemical studies were also performed for these derivatives. The bioavailability radar analysis explored that of all these compounds have excellent bioavailability for five (5) descriptors, however, the sixth descriptor of instauration is slightly increased in all compounds.Communicated by Ramaswamy H. Sarma.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Flavones / Diabetes Mellitus Limits: Humans Language: En Journal: J Biomol Struct Dyn Year: 2022 Document type: Article Affiliation country: Pakistan Country of publication: United kingdom

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Flavones / Diabetes Mellitus Limits: Humans Language: En Journal: J Biomol Struct Dyn Year: 2022 Document type: Article Affiliation country: Pakistan Country of publication: United kingdom