Your browser doesn't support javascript.
loading
Synaptotagmin-11 inhibits spontaneous neurotransmission through vti1a.
Li, Wan-Ru; Wang, Ya-Long; Li, Chao; Gao, Pei; Zhang, Fei-Fan; Hu, Meiqin; Li, Jing-Chen; Zhang, Shuli; Li, Rena; Zhang, Claire Xi.
Affiliation
  • Li WR; Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China.
  • Wang YL; Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China.
  • Li C; State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
  • Gao P; University of Chinese Academy of Sciences, Beijing, China.
  • Zhang FF; Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China.
  • Hu M; Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China.
  • Li JC; Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA.
  • Zhang S; Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China.
  • Li R; State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
  • Zhang CX; University of Chinese Academy of Sciences, Beijing, China.
J Neurochem ; 159(4): 729-741, 2021 11.
Article in En | MEDLINE | ID: mdl-34599505
Recent work has revealed that spontaneous release plays critical roles in the central nervous system, but how it is regulated remains elusive. Here, we report that synaptotagmin-11 (Syt11), a Ca2+ -independent Syt isoform associated with schizophrenia and Parkinson's disease, suppressed spontaneous release. Syt11-knockout hippocampal neurons showed an increased frequency of miniature excitatory post-synaptic currents while over-expression of Syt11 inversely decreased the frequency. Neither knockout nor over-expression of Syt11 affected the average amplitude, suggesting the pre-synaptic regulation of spontaneous neurotransmission by Syt11. Glutathione S-transferase pull-down, co-immunoprecipitation, and affinity-purification experiments demonstrated a direct interaction of Syt11 with vps10p-tail-interactor-1a (vti1a), a non-canonical SNARE protein that maintains spontaneous release. Importantly, knockdown of vti1a reversed the phenotype of Syt11 knockout, identifying vti1a as the main target of Syt11 inhibition. Domain analysis revealed that the C2A domain of Syt11 bound vti1a with high affinity. Consistently, expression of the C2A domain alone rescued the phenotype of elevated spontaneous release in Syt11-knockout neurons similar to the full-length protein. Altogether, our results suggest that Syt11 inhibits vti1a-containing vesicles during spontaneous release.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Synaptic Transmission / Synaptotagmins / Qb-SNARE Proteins Limits: Animals Language: En Journal: J Neurochem Year: 2021 Document type: Article Affiliation country: China Country of publication: United kingdom

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Synaptic Transmission / Synaptotagmins / Qb-SNARE Proteins Limits: Animals Language: En Journal: J Neurochem Year: 2021 Document type: Article Affiliation country: China Country of publication: United kingdom