Your browser doesn't support javascript.
loading
Sign-tunable anomalous Hall effect induced by two-dimensional symmetry-protected nodal structures in ferromagnetic perovskite thin films.
Sohn, Byungmin; Lee, Eunwoo; Park, Se Young; Kyung, Wonshik; Hwang, Jinwoong; Denlinger, Jonathan D; Kim, Minsoo; Kim, Donghan; Kim, Bongju; Ryu, Hanyoung; Huh, Soonsang; Oh, Ji Seop; Jung, Jong Keun; Oh, Dongjin; Kim, Younsik; Han, Moonsup; Noh, Tae Won; Yang, Bohm-Jung; Kim, Changyoung.
Affiliation
  • Sohn B; Center for Correlated Electron Systems, Institute for Basic Science, Seoul, Korea.
  • Lee E; Department of Physics and Astronomy, Seoul National University, Seoul, Korea.
  • Park SY; Center for Correlated Electron Systems, Institute for Basic Science, Seoul, Korea.
  • Kyung W; Department of Physics and Astronomy, Seoul National University, Seoul, Korea.
  • Hwang J; Center for Theoretical Physics, Seoul National University, Seoul, Korea.
  • Denlinger JD; Department of Physics and Origin of Matter and Evolution of Galaxies (OMEG) Institute, Soongsil University, Seoul, Korea. sp2829@ssu.ac.kr.
  • Kim M; Center for Correlated Electron Systems, Institute for Basic Science, Seoul, Korea.
  • Kim D; Department of Physics and Astronomy, Seoul National University, Seoul, Korea.
  • Kim B; Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
  • Ryu H; Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
  • Huh S; Center for Correlated Electron Systems, Institute for Basic Science, Seoul, Korea.
  • Oh JS; Department of Physics and Astronomy, Seoul National University, Seoul, Korea.
  • Jung JK; Center for Correlated Electron Systems, Institute for Basic Science, Seoul, Korea.
  • Oh D; Department of Physics and Astronomy, Seoul National University, Seoul, Korea.
  • Kim Y; Center for Correlated Electron Systems, Institute for Basic Science, Seoul, Korea.
  • Han M; Department of Physics and Astronomy, Seoul National University, Seoul, Korea.
  • Noh TW; Center for Correlated Electron Systems, Institute for Basic Science, Seoul, Korea.
  • Yang BJ; Department of Physics and Astronomy, Seoul National University, Seoul, Korea.
  • Kim C; Center for Correlated Electron Systems, Institute for Basic Science, Seoul, Korea.
Nat Mater ; 20(12): 1643-1649, 2021 Dec.
Article in En | MEDLINE | ID: mdl-34608283
ABSTRACT
Magnetism and spin-orbit coupling are two quintessential ingredients underlying topological transport phenomena in itinerant ferromagnets. When spin-polarized bands support nodal points/lines with band degeneracy that can be lifted by spin-orbit coupling, the nodal structures become a source of Berry curvature, leading to a large anomalous Hall effect. However, two-dimensional systems can possess stable nodal structures only when proper crystalline symmetry exists. Here we show that two-dimensional spin-polarized band structures of perovskite oxides generally support symmetry-protected nodal lines and points that govern both the sign and the magnitude of the anomalous Hall effect. To demonstrate this, we performed angle-resolved photoemission studies of ultrathin films of SrRuO3, a representative metallic ferromagnet with spin-orbit coupling. We show that the sign-changing anomalous Hall effect upon variation in the film thickness, magnetization and chemical potential can be well explained by theoretical models. Our work may facilitate new switchable devices based on ferromagnetic ultrathin films.

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Nat Mater Journal subject: CIENCIA / QUIMICA Year: 2021 Document type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Nat Mater Journal subject: CIENCIA / QUIMICA Year: 2021 Document type: Article