Your browser doesn't support javascript.
loading
Intramolecular Noncovalent Interaction-Enabled Dopant-Free Hole-Transporting Materials for High-Performance Inverted Perovskite Solar Cells.
Yang, Kun; Liao, Qiaogan; Huang, Jun; Zhang, Zilong; Su, Mengyao; Chen, Zhicai; Wu, Ziang; Wang, Dong; Lai, Ziwei; Woo, Han Young; Cao, Yan; Gao, Peng; Guo, Xugang.
Affiliation
  • Yang K; Department of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong, 518055, China.
  • Liao Q; Department of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong, 518055, China.
  • Huang J; School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China.
  • Zhang Z; Department of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong, 518055, China.
  • Su M; CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China.
  • Chen Z; Department of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong, 518055, China.
  • Wu Z; Department of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong, 518055, China.
  • Wang D; Department of Chemistry, Korea University, Seoul, 136-713, Republic of Korea.
  • Lai Z; Department of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong, 518055, China.
  • Woo HY; School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China.
  • Cao Y; Institute of Advanced Study, Shenzhen University, Shenzhen, Guangdong, 518060, China.
  • Gao P; Department of Chemistry, Korea University, Seoul, 136-713, Republic of Korea.
  • Guo X; Institute of Advanced Study, Shenzhen University, Shenzhen, Guangdong, 518060, China.
Angew Chem Int Ed Engl ; 61(2): e202113749, 2022 Jan 10.
Article in En | MEDLINE | ID: mdl-34783150
ABSTRACT
Intramolecular noncovalent interactions (INIs) have served as a powerful strategy for accessing organic semiconductors with enhanced charge transport properties. Herein, we apply the INI strategy for developing dopant-free hole-transporting materials (HTMs) by constructing two small-molecular HTMs featuring an INI-integrated backbone for high-performance perovskite solar cells (PVSCs). Upon incorporating noncovalent S⋅⋅⋅O interaction into their simple-structured backbones, the resulting HTMs, BTORA and BTORCNA, showed self-planarized backbones, tuned energy levels, enhanced thermal properties, appropriate film morphology, and effective defect passivation. More importantly, the high film crystallinity enables the materials with substantial hole mobilities, thus rendering them as promising dopant-free HTMs. Consequently, the BTORCNA-based inverted PVSCs delivered a power conversion efficiency of 21.10 % with encouraging long-term device stability, outperforming the devices based on BTRA without S⋅⋅⋅O interaction (18.40 %). This work offers a practical approach to designing charge transporting layers with high intrinsic mobilities for high-performance PVSCs.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Angew Chem Int Ed Engl Year: 2022 Document type: Article Affiliation country: China

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Angew Chem Int Ed Engl Year: 2022 Document type: Article Affiliation country: China