Your browser doesn't support javascript.
loading
Enteral ferric citrate absorption is dependent on the iron transport protein ferroportin.
Hanudel, Mark R; Czaya, Brian; Wong, Shirley; Rappaport, Maxime; Namjoshi, Shweta; Chua, Kristine; Jung, Grace; Gabayan, Victoria; Qiao, Bo; Nemeth, Elizabeta; Ganz, Tomas.
Affiliation
  • Hanudel MR; Department of Pediatrics, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California, USA. Electronic address: mhanudel@mednet.ucla.edu.
  • Czaya B; Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California, USA.
  • Wong S; Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California, USA.
  • Rappaport M; Department of Pediatrics, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California, USA.
  • Namjoshi S; Department of Pediatrics, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California, USA.
  • Chua K; Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California, USA.
  • Jung G; Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California, USA.
  • Gabayan V; Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California, USA.
  • Qiao B; Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California, USA.
  • Nemeth E; Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California, USA.
  • Ganz T; Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California, USA.
Kidney Int ; 101(4): 711-719, 2022 04.
Article in En | MEDLINE | ID: mdl-34838540
ABSTRACT
Ferric citrate is approved as an iron replacement product in patients with non-dialysis chronic kidney disease and iron deficiency anemia. Ferric citrate-delivered iron is enterally absorbed, but the specific mechanisms involved have not been evaluated, including the possibilities of conventional, transcellular ferroportin-mediated absorption and/or citrate-mediated paracellular absorption. Here, we first demonstrate the efficacy of ferric citrate in high hepcidin models, including Tmprss6 knockout mice (characterized by iron-refractory iron deficiency anemia) with and without adenine diet-induced chronic kidney disease. Next, to assess whether or not enteral ferric citrate absorption is dependent on ferroportin, we evaluated the effects of ferric citrate in a tamoxifen-inducible, enterocyte-specific ferroportin knockout murine model (Villin-Cre-ERT2, Fpnflox/flox). In this model, ferroportin deletion was efficient, as tamoxifen injection induced a 4000-fold decrease in duodenum ferroportin mRNA expression, with undetectable ferroportin protein on Western blot of duodenal enterocytes, resulting in a severe iron deficiency anemia phenotype. In ferroportin-deficient mice, three weeks of 1% ferric citrate dietary supplementation, a dose that prevented iron deficiency in control mice, did not improve iron status or rescue the iron deficiency anemia phenotype. We repeated the conditional ferroportin knockout experiment in the setting of uremia, using an adenine nephropathy model, where three weeks of 1% ferric citrate dietary supplementation again failed to improve iron status or rescue the iron deficiency anemia phenotype. Thus, our data suggest that enteral ferric citrate absorption is dependent on conventional enterocyte iron transport by ferroportin and that, in these models, significant paracellular absorption does not occur.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Anemia, Iron-Deficiency / Cation Transport Proteins Limits: Animals / Humans Language: En Journal: Kidney Int Year: 2022 Document type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Anemia, Iron-Deficiency / Cation Transport Proteins Limits: Animals / Humans Language: En Journal: Kidney Int Year: 2022 Document type: Article