Your browser doesn't support javascript.
loading
Metapopulations with habitat modification.
Miller, Zachary R; Allesina, Stefano.
Affiliation
  • Miller ZR; Department of Ecology and Evolution, The University of Chicago, Chicago, IL 60637; zachmiller@uchicago.edu.
  • Allesina S; Department of Ecology and Evolution, The University of Chicago, Chicago, IL 60637.
Proc Natl Acad Sci U S A ; 118(49)2021 12 07.
Article in En | MEDLINE | ID: mdl-34857638
Across the tree of life, organisms modify their local environment, rendering it more or less hospitable for other species. Despite the ubiquity of these processes, simple models that can be used to develop intuitions about the consequences of widespread habitat modification are lacking. Here, we extend the classic Levins metapopulation model to a setting where each of n species can colonize patches connected by dispersal, and when patches are vacated via local extinction, they retain a "memory" of the previous occupant-modeling habitat modification. While this model can exhibit a wide range of dynamics, we draw several overarching conclusions about the effects of modification and memory. In particular, we find that any number of species may potentially coexist, provided that each is at a disadvantage when colonizing patches vacated by a conspecific. This notion is made precise through a quantitative stability condition, which provides a way to unify and formalize existing conceptual models. We also show that when patch memory facilitates coexistence, it generically induces a positive relationship between diversity and robustness (tolerance of disturbance). Our simple model provides a portable, tractable framework for studying systems where species modify and react to a shared landscape.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Population Dynamics / Environmental Monitoring / Ecosystem Limits: Animals / Humans Language: En Journal: Proc Natl Acad Sci U S A Year: 2021 Document type: Article Country of publication: United States

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Population Dynamics / Environmental Monitoring / Ecosystem Limits: Animals / Humans Language: En Journal: Proc Natl Acad Sci U S A Year: 2021 Document type: Article Country of publication: United States