Linear Predictive Coding for Acute Stress Prediction from Computer Mouse Movements.
Annu Int Conf IEEE Eng Med Biol Soc
; 2021: 7465-7469, 2021 11.
Article
in En
| MEDLINE
| ID: mdl-34892820
Prior work demonstrated the potential of using the Linear Predictive Coding (LPC) filter to approximate muscle stiffness and damping from computer mouse movements to predict acute stress levels of users. Theoretically, muscle stiffness and damping in the arm can be estimated using a mass-spring-damper (MSD) biomechanical model. However, the damping frequency (i.e., stiffness) and damping ratio values derived using LPC were not yet compared with those from a theoretical MSD model. This work demonstrates that the damping frequency and damping ratio from LPC are significantly correlated with those from an MSD model, thus confirming the validity of using LPC to infer muscle stiffness and damping. We also compare the stress level binary classification performance using the values from LPC and MSD with each other and with neural network-based baselines. We found comparable performance across all conditions demonstrating LPC and MSD model-based stress prediction efficacy, especially for longer mouse trajectories.Clinical relevance- This work demonstrates the validity of the LPC filter to approximate muscle stiffness and damping and predict acute stress from computer mouse movements.
Full text:
1
Collection:
01-internacional
Database:
MEDLINE
Main subject:
Models, Theoretical
/
Movement
Type of study:
Prognostic_studies
/
Risk_factors_studies
Language:
En
Journal:
Annu Int Conf IEEE Eng Med Biol Soc
Year:
2021
Document type:
Article
Country of publication:
United States