Your browser doesn't support javascript.
loading
In vitro Bactericidal Activities of Combination Antibiotic Therapies Against Carbapenem-Resistant Klebsiella pneumoniae With Different Carbapenemases and Sequence Types.
Teo, Jocelyn Qi-Min; Fauzi, Nazira; Ho, Jayden Jun-Yuan; Tan, Si Hui; Lee, Shannon Jing-Yi; Lim, Tze Peng; Cai, Yiying; Chang, Hong Yi; Mohamed Yusoff, Nurhayati; Sim, James Heng-Chiak; Tan, Thuan Tong; Ong, Rick Twee-Hee; Kwa, Andrea Lay-Hoon.
Affiliation
  • Teo JQ; Department of Pharmacy, Singapore General Hospital, Singapore, Singapore.
  • Fauzi N; Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore.
  • Ho JJ; Department of Pharmacy, Singapore General Hospital, Singapore, Singapore.
  • Tan SH; Department of Pharmacy, Singapore General Hospital, Singapore, Singapore.
  • Lee SJ; Department of Pharmacy, Singapore General Hospital, Singapore, Singapore.
  • Lim TP; Department of Pharmacy, Singapore General Hospital, Singapore, Singapore.
  • Cai Y; Department of Pharmacy, Singapore General Hospital, Singapore, Singapore.
  • Chang HY; Singhealth Duke-NUS Pathology Academic Clinical Programme, Singapore, Singapore.
  • Mohamed Yusoff N; Singhealth Duke-NUS Medicine Academic Clinical Programme, Singapore, Singapore.
  • Sim JH; Department of Pharmacy, Singapore General Hospital, Singapore, Singapore.
  • Tan TT; Department of Pharmacy, Singapore General Hospital, Singapore, Singapore.
  • Ong RT; Department of Pharmacy, Singapore General Hospital, Singapore, Singapore.
  • Kwa AL; Department of Microbiology, Singapore General Hospital, Singapore, Singapore.
Front Microbiol ; 12: 779988, 2021.
Article in En | MEDLINE | ID: mdl-34970239
ABSTRACT
Carbapenem-resistant Klebsiella pneumoniae (CRKP) is becoming increasingly problematic due to the limited effectiveness of new antimicrobials or other factors such as treatment cost. Thus, combination therapy remains a suitable treatment option. We aimed to evaluate the in vitro bactericidal activity of various antibiotic combinations against CRKP with different carbapenemase genotypes and sequence types (STs). Thirty-seven CRKP with various STs and carbapenemases were exposed to 11 antibiotic combinations (polymyxin B or tigecycline in combination with ß-lactams including aztreonam, cefepime, piperacillin/tazobactam, doripenem, meropenem, and polymyxin B with tigecycline) in static time-kill studies (TKS) using clinically achievable concentrations. Out of the 407 isolate-combination pairs, only 146 (35.8%) were bactericidal (≥3 log10CFU/mL decrease from initial inoculum). Polymyxin B in combination with doripenem, meropenem, or cefepime was the most active, each demonstrating bactericidal activity in 27, 24, and 24 out of 37 isolates, respectively. Tigecycline in combination with ß-lactams was rarely bactericidal. Aside from the lower frequency of bactericidal activity in the dual-carbapenemase producers, there was no apparent difference in combination activity among the strains with other carbapenemase types. In addition, bactericidal combinations were varied even in strains with similar STs, carbapenemases, and other genomic characteristics. Our findings demonstrate that the bactericidal activity of antibiotic combinations is highly strain-specific likely owing to the complex interplay of carbapenem-resistance mechanisms, i.e., carbapenemase genotype alone cannot predict in vitro bactericidal activity. The availability of WGS information can help rationalize the activity of certain combinations. Further studies should explore the use of genomic markers with phenotypic information to predict combination activity.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Type of study: Prognostic_studies Language: En Journal: Front Microbiol Year: 2021 Document type: Article Affiliation country: Singapore

Full text: 1 Collection: 01-internacional Database: MEDLINE Type of study: Prognostic_studies Language: En Journal: Front Microbiol Year: 2021 Document type: Article Affiliation country: Singapore