Your browser doesn't support javascript.
loading
Quantification of trace transformation products of rocket fuel unsymmetrical dimethylhydrazine in sand using vacuum-assisted headspace solid-phase microextraction.
Zhakupbekova, Aray; Baimatova, Nassiba; Psillakis, Elefteria; Kenessov, Bulat.
Affiliation
  • Zhakupbekova A; Center of Physical Chemical Methods of Research and Analysis, Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, 96a Tole bi Street, office 101, 050012, Almaty, Kazakhstan.
  • Baimatova N; UNESCO Chair for Sustainable Development, Al-Farabi Kazakh National University, Almaty, Kazakhstan.
  • Psillakis E; Center of Physical Chemical Methods of Research and Analysis, Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, 96a Tole bi Street, office 101, 050012, Almaty, Kazakhstan. baimatova@cfhma.kz.
  • Kenessov B; Laboratory of Aquatic Chemistry, School of Environmental Engineering, Technical University of Crete, Chania, Greece.
Environ Sci Pollut Res Int ; 29(22): 33645-33656, 2022 May.
Article in En | MEDLINE | ID: mdl-35028834
Quantification of unsymmetrical dimethylhydrazine transformation products in solid samples is an important stage in monitoring of environmental pollution caused by heavy rockets launches. The new method for simultaneous quantification of unsymmetrical dimethylhydrazine transformation products in sand samples using vacuum-assisted headspace solid-phase microextraction without addition of water followed by gas chromatography-mass spectrometry is proposed. Decreasing air evacuation time from 120 to 20 s at 23 °C resulted in increased responses of analytes by 25-46% and allowed obtaining similar responses as after evacuation at -30 °C. The best combination of responses of analytes and their relative standard deviations (RSDs) was achieved after air evacuation of a sample (m = 1.00 g) for 20 s at 23 °C, incubation for 30 min at 40 °C, and 30-min extraction at 40 °C by Carboxen/polydimethylsiloxane (Car/PDMS) fiber. The method was validated in terms of linearity (R2=0.9912-0.9938), limits of detection (0.035 to 3.6 ng g-1), limits of quantification (0.12-12 ng g-1), recovery (84-97% with RSDs 1-11%), repeatability (RSDs 3-9%), and reproducibility (RSDs 7-11%). It has a number of major advantages over existing methods based on headspace solid-phase microextraction-lower detection limits, better accuracy and precision at similar or lower cost of sample preparation. The developed method was successfully applied for studying losses of analytes from open vials with model sand spiked with unsymmetrical dimethylhydrazine transformation products. It can be recommended for analysis of trace concentrations of unsymmetrical dimethylhydrazine transformation products when studying their transformation, migration and distribution in contaminated sand.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Solid Phase Microextraction / Sand Type of study: Prognostic_studies Language: En Journal: Environ Sci Pollut Res Int Journal subject: SAUDE AMBIENTAL / TOXICOLOGIA Year: 2022 Document type: Article Affiliation country: Kazakhstan Country of publication: Germany

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Solid Phase Microextraction / Sand Type of study: Prognostic_studies Language: En Journal: Environ Sci Pollut Res Int Journal subject: SAUDE AMBIENTAL / TOXICOLOGIA Year: 2022 Document type: Article Affiliation country: Kazakhstan Country of publication: Germany