Your browser doesn't support javascript.
loading
Quantification of the NA dependent change of shape in the image formation of a z-polarized fluorescent molecule using vectorial diffraction simulations.
Ströhl, Florian; Bruggeman, Ezra; Rowlands, Christopher J; Wolfson, Deanna L; Ahluwalia, Balpreet S.
Affiliation
  • Ströhl F; Department of Physics and Technology, UiT The Arctic University of Norway, Tromsø, Norway.
  • Bruggeman E; Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK.
  • Rowlands CJ; Faculty of Engineering, Department of Bioengineering, Imperial College London, London, UK.
  • Wolfson DL; Department of Physics and Technology, UiT The Arctic University of Norway, Tromsø, Norway.
  • Ahluwalia BS; Department of Physics and Technology, UiT The Arctic University of Norway, Tromsø, Norway.
Microsc Res Tech ; 85(5): 2016-2022, 2022 May.
Article in En | MEDLINE | ID: mdl-35045219
ABSTRACT
The point spread function of a fixed fluorophore with its dipole axis colinear to the optical axis appears donut-shaped when seen through a microscope, and its light distribution in the pupil plane is radially polarized. Yet other techniques, such as photolithography, report that this same light distribution in the pupil plane appears as a solid spot. How can this same distribution lead to a spot in one case but a donut in the other? Here, we show how the tube lens of the system plays a critical role in determining this shape. Using a vectorial treatment of image formation, we simulate the relative contributions of both longitudinal and radial components to the image of a dipole emitter and thus show how the donut (typically reported for z-polarized single molecule fluorescence microscopy) transforms into a solid spot (as commonly reported for photolithography) as the numerical aperture of the tube lens increases. We find that the transition point occurs around 0.7 NA, which is significantly higher than used for most microscopy systems and lower than for common photolithography systems, thus resolving the seeming paradox of dipole shape.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Algorithms / Lenses Language: En Journal: Microsc Res Tech Journal subject: DIAGNOSTICO POR IMAGEM Year: 2022 Document type: Article Affiliation country: Norway

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Algorithms / Lenses Language: En Journal: Microsc Res Tech Journal subject: DIAGNOSTICO POR IMAGEM Year: 2022 Document type: Article Affiliation country: Norway