Advanced three-dimensional hierarchical porous α-MnO2 nanowires network toward enhanced supercapacitive performance.
Nanotechnology
; 2022 Jan 19.
Article
in En
| MEDLINE
| ID: mdl-35045400
Hierarchical α-MnO2 nanowires with oxygen vacancies grown on carbon fiber have been synthesized by a simple hydrothermal method with the assistance of Ti4+ ions. Ti4+ ions play an important role in controlling the morphology and crystalline structure of MnO2. The morphology and structure of the as-synthesized MnO2 could be tuned from δ-MnO2 nanosheets to hierarchical α-MnO2 nanowires with the help of Ti4+ ions. Based on its fascinating properties, such as many oxygen vacancies, high specific surface area and the interconnected porous structure, the α-MnO2 electrode delivers a high specific capacitance of 472 F g-1 at a current density of 1 A g-1 and the rate capability of 57.6% (from 1 to 16A g-1). The assembled symmetric supercapacitor based on α-MnO2 electrode exhibits remarkable performance with a high energy density of 44.5 Wh kg-1 at a power density of 2.0 kW kg-1 and good cyclic stability (92.6% after 10000 cycles). This work will provide a reference for exploring and designing high-performance MnO2 materials.
Full text:
1
Collection:
01-internacional
Database:
MEDLINE
Language:
En
Journal:
Nanotechnology
Year:
2022
Document type:
Article
Affiliation country:
China
Country of publication:
United kingdom