Your browser doesn't support javascript.
loading
Boosting the Near-Infrared Emission of Ag2S Nanoparticles by a Controllable Surface Treatment for Bioimaging Applications.
Gutierrez, Irene Zabala; Gerke, Christoph; Shen, Yingli; Ximendes, Erving; Silvan, Miguel Manso; Marin, Riccardo; Jaque, Daniel; Calderón, Oscar G; Melle, Sonia; Rubio-Retama, Jorge.
Affiliation
  • Gutierrez IZ; Departamento de Química en Ciencias Farmacéuticas, Universidad Complutense de Madrid, Madrid 28040, Spain.
  • Gerke C; Departamento de Química en Ciencias Farmacéuticas, Universidad Complutense de Madrid, Madrid 28040, Spain.
  • Shen Y; Nanobiology Group, Instituto Ramón y Cajal de Investigación Sanitaria, IRYCIS, Madrid 28034, Spain.
  • Ximendes E; NanoBIG, Facultad de Ciencias, Departamento de Física de Materiales,Universidad Autónoma de Madrid, Madrid 28049, Spain.
  • Silvan MM; NanoBIG, Facultad de Ciencias, Departamento de Física de Materiales,Universidad Autónoma de Madrid, Madrid 28049, Spain.
  • Marin R; Nanobiology Group, Instituto Ramón y Cajal de Investigación Sanitaria, IRYCIS, Madrid 28034, Spain.
  • Jaque D; Facultad de Ciencias, Departamento de Física Aplicada, Universidad Autónoma de Madrid, Madrid 28049, Spain.
  • Calderón OG; NanoBIG, Facultad de Ciencias, Departamento de Física de Materiales,Universidad Autónoma de Madrid, Madrid 28049, Spain.
  • Melle S; NanoBIG, Facultad de Ciencias, Departamento de Física de Materiales,Universidad Autónoma de Madrid, Madrid 28049, Spain.
  • Rubio-Retama J; Nanobiology Group, Instituto Ramón y Cajal de Investigación Sanitaria, IRYCIS, Madrid 28034, Spain.
ACS Appl Mater Interfaces ; 14(4): 4871-4881, 2022 Feb 02.
Article in En | MEDLINE | ID: mdl-35049282
ABSTRACT
Ag2S nanoparticles are the staple for high-resolution preclinical imaging and sensing owing to their photochemical stability, low toxicity, and photoluminescence (PL) in the second near-infrared biological window. Unfortunately, Ag2S nanoparticles exhibit a low PL efficiency attributed to their defective surface chemistry, which curbs their translation into the clinics. To address this shortcoming, we present a simple methodology that allows to improve the PL quantum yield from 2 to 10%, which is accompanied by a PL lifetime lengthening from 0.7 to 3.8 µs. Elemental mapping and X-ray photoelectron spectroscopy indicate that the PL enhancement is related to the partial removal of sulfur atoms from the nanoparticle's surface, reducing surface traps responsible for nonradiative de-excitation processes. This interpretation is further backed by theoretical modeling. The acquired knowledge about the nanoparticles' surface chemistry is used to optimize the procedure to transfer the nanoparticles into aqueous media, obtaining water-dispersible Ag2S nanoparticles that maintain excellent PL properties. Finally, we compare the performance of these nanoparticles with other near-infrared luminescent probes in a set of in vitro and in vivo experiments, which demonstrates not only their cytocompatibility but also their superb optical properties when they are used in vivo, affording higher resolution images.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Silver / Sulfur / Biocompatible Materials / Nanoparticles / Optical Imaging Language: En Journal: ACS Appl Mater Interfaces Journal subject: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Year: 2022 Document type: Article Affiliation country: Spain

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Silver / Sulfur / Biocompatible Materials / Nanoparticles / Optical Imaging Language: En Journal: ACS Appl Mater Interfaces Journal subject: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Year: 2022 Document type: Article Affiliation country: Spain
...