Your browser doesn't support javascript.
loading
Anchoring Group-Mediated Radiolabeling of Inorganic Nanoparticles─A Universal Method for Constructing Nuclear Medicine Imaging Nanoprobes.
Ge, Jianxian; Chen, Lei; Huang, Baoxing; Gao, Yun; Zhou, Dandan; Zhou, Yi; Chen, Can; Wen, Ling; Li, Qing; Zeng, Jianfeng; Zhong, Zhiyuan; Gao, Mingyuan.
Affiliation
  • Ge J; Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou
  • Chen L; Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou
  • Huang B; Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou
  • Gao Y; Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou
  • Zhou D; Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou
  • Zhou Y; Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou
  • Chen C; Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou
  • Wen L; The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215000, China.
  • Li Q; Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou
  • Zeng J; Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou
  • Zhong Z; College of Chemistry, Chemical Engineering and Materials Science of Soochow University, Soochow University, Suzhou 215123, China.
  • Gao M; Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou
ACS Appl Mater Interfaces ; 14(7): 8838-8846, 2022 Feb 23.
Article in En | MEDLINE | ID: mdl-35133124
ABSTRACT
Nuclear medicine imaging has aroused great interest in the design and synthesis of versatile radioactive nanoprobes, while most of the methods developed for radiolabeling nanoprobes are difficult to satisfy the criteria of clinical translation, including easy operation, mild labeling conditions, high efficiency, and high radiolabeling stability. Herein, we demonstrated the universality of a simple but efficient radiolabeling method recently developed for constructing nuclear imaging nanoprobes, that is, ligand anchoring group-mediated radiolabeling (LAGMERAL). In this method, a diphosphonate-polyethylene glycol (DP-PEG) decorating on the surface of inorganic nanoparticles plays an essential role. In principle, owing to the strong binding affinity to a great variety of metal ions, it can not only endow the underlying nanoparticles containing metal ions including some main group metal ions, transition metal ions, and lanthanide metal ions with excellent colloidal stability and biocompatibility but also enable efficient radiolabeling through the diphosphonate group. Based on this assumption, inorganic nanoparticles such as Fe3O4 nanoparticles, NaGdF4Yb,Tm nanoparticles, and Cu2-xS nanoparticles, as representatives of functional inorganic nanoparticles suitable for different imaging modalities including magnetic resonance imaging (MRI), upconversion luminescence imaging (UCL), and photoacoustic imaging (PAI), respectively, were chosen to be radiolabeled with different kinds of radionuclides such as SPECT nuclides (e.g., 99mTc), PET nuclides (e.g., 68Ga), and therapeutic SPECT nuclides (e.g., 177Lu) to demonstrate the reliability of the LAGMERAL approach. The experimental results showed that the obtained nanoprobes exhibited high radiolabeling stability, and the whole radiolabeling process had negligible impacts on the physical and chemical properties of the initial nanoparticles. Through passive targeting SPECT/MRI of glioma tumor, active targeting SPECT/UCL of colorectal cancer, and SPECT/PAI of lymphatic metastasis, the outstanding potentials of the resulting radioactive nanoprobes for sensitive tumor diagnosis were demonstrated, manifesting the feasibility and efficiency of LAGMERAL.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Lanthanoid Series Elements / Nanoparticles / Nuclear Medicine Language: En Journal: ACS Appl Mater Interfaces Journal subject: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Year: 2022 Document type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Lanthanoid Series Elements / Nanoparticles / Nuclear Medicine Language: En Journal: ACS Appl Mater Interfaces Journal subject: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Year: 2022 Document type: Article