Your browser doesn't support javascript.
loading
Longitudinal assessment of early-life white matter development with quantitative relaxometry in nonhuman primates.
Moody, Jason F; Aggarwal, Nakul; Dean, Douglas C; Tromp, Do P M; Kecskemeti, Steve R; Oler, Jonathan A; Kalin, Ned H; Alexander, Andrew L.
Affiliation
  • Moody JF; Department of Medical Physics, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI 53705, United States. Electronic address: jfmoody@wisc.edu.
  • Aggarwal N; Department of Psychiatry, University of Wisconsin-Madison, 6001 Research Park Boulevard, Madison, WI 53719, United States.
  • Dean DC; Department of Medical Physics, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI 53705, United States; Department of Pediatrics, University of Wisconsin-Madison, 600 Highland Avenue, Madison, WI 53792, United States; Waisman Center, University of Wisconsin-Madison, 1500 Highland Ave
  • Tromp DPM; Department of Psychiatry, University of Wisconsin-Madison, 6001 Research Park Boulevard, Madison, WI 53719, United States.
  • Kecskemeti SR; Waisman Center, University of Wisconsin-Madison, 1500 Highland Avenue, Madison, WI 53705, United States.
  • Oler JA; Department of Psychiatry, University of Wisconsin-Madison, 6001 Research Park Boulevard, Madison, WI 53719, United States.
  • Kalin NH; Department of Psychiatry, University of Wisconsin-Madison, 6001 Research Park Boulevard, Madison, WI 53719, United States.
  • Alexander AL; Department of Medical Physics, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI 53705, United States; Department of Psychiatry, University of Wisconsin-Madison, 6001 Research Park Boulevard, Madison, WI 53719, United States; Waisman Center, University of Wisconsin-Madison, 1500 Hig
Neuroimage ; 251: 118989, 2022 05 01.
Article in En | MEDLINE | ID: mdl-35151851
ABSTRACT
Alterations in white matter (WM) development are associated with many neuropsychiatric and neurodevelopmental disorders. Most MRI studies examining WM development employ diffusion tensor imaging (DTI), which relies on estimating diffusion patterns of water molecules as a reflection of WM microstructure. Quantitative relaxometry, an alternative method for characterizing WM microstructural changes, is based on molecular interactions associated with the magnetic relaxation of protons. In a longitudinal study of 34 infant non-human primates (NHP) (Macaca mulatta) across the first year of life, we implement a novel, high-resolution, T1-weighted MPnRAGE sequence to examine WM trajectories of the longitudinal relaxation rate (qR1) in relation to DTI metrics and gestational age at scan. To the best of our knowledge, this is the first study to assess developmental WM trajectories in NHPs using quantitative relaxometry and the first to directly compare DTI and relaxometry metrics during infancy. We demonstrate that qR1 exhibits robust logarithmic growth, unfolding in a posterior-anterior and medial-lateral fashion, similar to DTI metrics. On a within-subject level, DTI metrics and qR1 are highly correlated, but are largely unrelated on a between-subject level. Unlike DTI metrics, gestational age at birth (time in utero) is a strong predictor of early postnatal qR1 levels. Whereas individual differences in DTI metrics are maintained across the first year of life, this is not the case for qR1. These results point to the similarities and differences in using quantitative relaxometry and DTI in developmental studies, providing a basis for future studies to characterize the unique processes that these measures reflect at the cellular and molecular level.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: White Matter Type of study: Observational_studies / Risk_factors_studies Limits: Animals / Humans Language: En Journal: Neuroimage Journal subject: DIAGNOSTICO POR IMAGEM Year: 2022 Document type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: White Matter Type of study: Observational_studies / Risk_factors_studies Limits: Animals / Humans Language: En Journal: Neuroimage Journal subject: DIAGNOSTICO POR IMAGEM Year: 2022 Document type: Article
...