Frontal lobe real-time EEG analysis using machine learning techniques for mental stress detection.
J Integr Neurosci
; 21(1): 20, 2022 Jan 28.
Article
in En
| MEDLINE
| ID: mdl-35164456
Stress has become a dangerous health problem in our life, especially in student education journey. Accordingly, previous methods have been conducted to detect mental stress based on biological and biochemical effects. Moreover, hormones, physiological effects, and skin temperature have been extensively used for stress detection. However, based on the recent literature, biological, biochemical, and physiological-based methods have shown inconsistent findings, which are initiated due to hormones' instability. Therefore, it is crucial to study stress using different mechanisms such as Electroencephalogram (EEG) signals. In this research study, the frontal lobes EEG spectrum analysis is applied to detect mental stress. Initially, we apply a Fast Fourier Transform (FFT) as a feature extraction stage to measure all bands' power density for the frontal lobe. After that, we used two type of classifications such as subject wise and mix (mental stress vs. control) using Support Vector Machine (SVM) and Naive Bayes (NB) machine learning classifiers. Our obtained results of the average subject wise classification showed that the proposed technique has better accuracy (98.21%). Moreover, this technique has low complexity, high accuracy, simple and easy to use, no over fitting, and it could be used as a real-time and continuous monitoring technique for medical applications.
Key words
Full text:
1
Collection:
01-internacional
Database:
MEDLINE
Main subject:
Stress, Psychological
/
Signal Processing, Computer-Assisted
/
Electroencephalography
/
Machine Learning
/
Frontal Lobe
Type of study:
Diagnostic_studies
Limits:
Adult
/
Female
/
Humans
/
Male
Language:
En
Journal:
J Integr Neurosci
Journal subject:
NEUROLOGIA
Year:
2022
Document type:
Article
Affiliation country:
Saudi Arabia
Country of publication:
Singapore