Chromosome painting reveals the genomic structure of three polyploid species of Ipomoea.
Genome
; 65(6): 331-339, 2022 Jun 01.
Article
in En
| MEDLINE
| ID: mdl-35254885
Cultivated sweetpotato [Ipomoea batatas (L.) Lam.] from the family Convolvulaceae is a hexaploid species with 2n = 6x = 90 and has been controversial regarding its nature as an autopolyploid arising within a species or an allopolyploid forming between species. Here, we developed oligonucleotide-based painting probes for two chromosomes of I. nil, a model diploid Ipomoea species. Using these probes, we revealed the pairing behavior of homoeologous chromosomes in I. batatas and its two possible polyploid ancestral species, tetraploid I. tabascana (2n = 4x = 60) and hexaploid I. trifida (2n = 6x = 90). Chromosome painting analysis revealed a high percentage of quadrivalent formation in zygotene-pachytene cells of I. tabascana, which supported that I. tabascana was an autotetraploid likely derived by doubling of structurally similar and homologous genomes rather than a hybrid between I. batatas and I. trifida (2x). A high frequency of hexavalent/bivalent and tetravalent pairing was observed in I. trifida (6x) and I. batatas. However, the percentage of hexavalent pairing in I. trifida (6x) was far higher than that in I. batatas. Thus, the present results tend to support that I. trifida (6x) is an autohexaploid, while I. batatas is more likely to be a segmental allohexaploid.
Key words
Full text:
1
Collection:
01-internacional
Database:
MEDLINE
Main subject:
Ipomoea
/
Ipomoea batatas
Language:
En
Journal:
Genome
Journal subject:
GENETICA
Year:
2022
Document type:
Article
Affiliation country:
China
Country of publication:
Canada