Your browser doesn't support javascript.
loading
Photoenergy Harvesting by Photoacid Solution.
Bae, Jaehyeong; Lim, Haeseong; Ahn, Jaewan; Kim, Yoon Hwa; Kim, Min Soo; Kim, Il-Doo.
Affiliation
  • Bae J; Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
  • Lim H; John A. Paulson School of Engineering and Applied Science, Harvard University, Cambridge, MA, 02138, USA.
  • Ahn J; Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
  • Kim YH; Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
  • Kim MS; Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
  • Kim ID; Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
Adv Mater ; 34(24): e2201734, 2022 Jun.
Article in En | MEDLINE | ID: mdl-35404527
ABSTRACT
Solar energy has seen 180 years of development since the discovery of the photovoltaic effect, having achieved the most successful commercialization in the energy-harvesting fields. Despite its long history, even the most state-of-the-art photovoltaics remain confined to solid-state devices, limiting spatial and light utilization efficiencies. Herein, a liquid-state photoenergy harvester based on a photoacid (PA), a chemical that releases protons upon light irradiation and recombines with them in the dark through a fully reversible reaction, is demonstrated. Asymmetric light exposure on a PA solution contained in a transparent tube generates a pH gradientpH = 2) along the exposed and dark regions, which charges the Nernst potential up to 0.7 V across the two electrodes embedded at each end, as if a capacitor. Owing to the reversibility of PAs, a PA-driven liquid-state photoenergy harvester (PLPH) generates capacitive currents up to 0.72 mA m-2  on an irradiation. Notably, the transparent nature of the PLPH enables vertical stacking up to 25 units, which multiplies the light-harvesting efficiencies by over 1000%. This unique approach provides a new route to harness solar energy with a form-factor-free design that maximizes spatial and light-use efficiencies.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Adv Mater Journal subject: BIOFISICA / QUIMICA Year: 2022 Document type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Adv Mater Journal subject: BIOFISICA / QUIMICA Year: 2022 Document type: Article