Your browser doesn't support javascript.
loading
Galvanotactic Migration of Glioblastoma and Brain Metastases Cells.
Lange, Falko; Venus, Jakob; Shams Esfand Abady, Daria; Porath, Katrin; Einsle, Anne; Sellmann, Tina; Neubert, Valentin; Reichart, Gesine; Linnebacher, Michael; Köhling, Rüdiger; Kirschstein, Timo.
Affiliation
  • Lange F; Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, 18057 Rostock, Germany.
  • Venus J; Center for Transdisciplinary Neurosciences Rostock, University of Rostock, 18147 Rostock, Germany.
  • Shams Esfand Abady D; Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, 18057 Rostock, Germany.
  • Porath K; Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, 18057 Rostock, Germany.
  • Einsle A; Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, 18057 Rostock, Germany.
  • Sellmann T; Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, 18057 Rostock, Germany.
  • Neubert V; Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, 18057 Rostock, Germany.
  • Reichart G; Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, 18057 Rostock, Germany.
  • Linnebacher M; Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, 18057 Rostock, Germany.
  • Köhling R; Molecular Oncology and Immunotherapy, Rostock University Medical Center, 18057 Rostock, Germany.
  • Kirschstein T; Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, 18057 Rostock, Germany.
Life (Basel) ; 12(4)2022 Apr 14.
Article in En | MEDLINE | ID: mdl-35455071
Galvanotaxis, the migration along direct current electrical fields, may contribute to the invasion of brain cancer cells in the tumor-surrounding tissue. We hypothesized that pharmacological perturbation of the epidermal growth factor (EGF) receptor and downstream phosphatidylinositol 3-kinase (PI3K)/AKT pathway prevent galvanotactic migration. In our study, patient-derived glioblastoma and brain metastases cells were exposed to direct current electrical field conditions. Velocity and direction of migration were estimated. To determine the effects of EGF receptor antagonist afatinib and AKT inhibitor capivasertib, assays of cell proliferation, apoptosis and immunoblot analyses were performed. Both inhibitors attenuated cell proliferation in a dose-dependent manner and induced apoptosis. We found that most of the glioblastoma cells migrated preferentially in an anodal direction, while brain metastases cells were unaffected by direct current stimulations. Afatinib presented only a mild attenuation of galvanotaxis. In contrast, capivasertib abolished the migration of glioblastoma cells without genetic alterations in the PI3K/AKT pathway, but not in cells harboring PTEN mutation. In these cells, an increase in the activation of ERK1/2 may in part substitute the inhibition of the AKT pathway. Overall, our data demonstrate that glioblastoma cells migrate in the electrical field and the PI3K/AKT pathway was found to be highly involved in galvanotaxis.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Life (Basel) Year: 2022 Document type: Article Affiliation country: Germany Country of publication: Switzerland

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Life (Basel) Year: 2022 Document type: Article Affiliation country: Germany Country of publication: Switzerland