Your browser doesn't support javascript.
loading
Ionic Dopant-Free Polymer Alloy Hole Transport Materials for High-Performance Perovskite Solar Cells.
Fu, Qiang; Tang, Xingchen; Liu, Hang; Wang, Rui; Liu, Tingting; Wu, Ziang; Woo, Han Young; Zhou, Tong; Wan, Xiangjian; Chen, Yongsheng; Liu, Yongsheng.
Affiliation
  • Fu Q; The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry and Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin 300071, China.
  • Tang X; The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry and Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin 300071, China.
  • Liu H; The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry and Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin 300071, China.
  • Wang R; The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry and Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin 300071, China.
  • Liu T; The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry and Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin 300071, China.
  • Wu Z; Department of Chemistry, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul 02841, South Korea.
  • Woo HY; Department of Chemistry, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul 02841, South Korea.
  • Zhou T; The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry and Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin 300071, China.
  • Wan X; The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry and Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin 300071, China.
  • Chen Y; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China.
  • Liu Y; The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry and Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin 300071, China.
J Am Chem Soc ; 144(21): 9500-9509, 2022 Jun 01.
Article in En | MEDLINE | ID: mdl-35594143
ABSTRACT
The dominated hole transport material (HTM) used in state-of-the-art perovskite solar cells (PSCs) is Spiro-OMeTAD, which needs to be doped to improve its conductivity and mobility. The inevitable instability induced by deliquescent dopants and the necessary oxidation process in air hinders the commercialization of this technology. Here, an alloy strategy using two conjugated polymers with highly similar structures but different crystallinities for dopant-free HTM and high-performance PSCs has been demonstrated. We found that the polymeric packing and crystallinity of a polymer alloy could be regulated finely by blending the polymer PM6 and our developed polymer PMSe, which exhibits a shorter π-π stacking distance due to the improved planarity of the polymer backbone with strong C═O···Se noncovalent interactions. The structure-property relationship of the polymer alloy is investigated by theoretical and experimental analyses. The optimized PSCs using the polymer alloy HTM without any ionic dopants feature an excellent power conversion efficiency of 24.53% and a high open circuit voltage (VOC) of 1.19 V with much improved stability. This efficiency is much higher than that of the control device using doped Spiro-OMeTAD HTM (PCE = 22.54%). Our work provides a very effective strategy to design and construct dopant-free hole transport materials for highly efficient perovskite solar cells and other applications.

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: J Am Chem Soc Year: 2022 Document type: Article Affiliation country: China

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: J Am Chem Soc Year: 2022 Document type: Article Affiliation country: China