Your browser doesn't support javascript.
loading
Simulation of the carbon dioxide hydrate-water interfacial energy.
Algaba, Jesús; Acuña, Esteban; Míguez, José Manuel; Mendiboure, Bruno; Zerón, Iván M; Blas, Felipe J.
Affiliation
  • Algaba J; Department of Chemical Engineering, South Kensington Campus, Imperial College London, SW7 2AZ London, United Kingdom.
  • Acuña E; Laboratorio de Simulacion Molecular y Quimica Computacional, CIQSO-Centro de Investigacion en Quimica Sostenible and Departamento de Ciencias Integradas, Universidad de Huelva, 21007 Huelva, Spain.
  • Míguez JM; Laboratorio de Simulacion Molecular y Quimica Computacional, CIQSO-Centro de Investigacion en Quimica Sostenible and Departamento de Ciencias Integradas, Universidad de Huelva, 21007 Huelva, Spain.
  • Mendiboure B; Laboratoire des Fluides Complexes et Leurs Reservoirs, UMR5150, Universite de Pau et des Pays de l'Adour, B. P. 1155, Pau Cedex 64014, France.
  • Zerón IM; Laboratorio de Simulacion Molecular y Quimica Computacional, CIQSO-Centro de Investigacion en Quimica Sostenible and Departamento de Ciencias Integradas, Universidad de Huelva, 21007 Huelva, Spain.
  • Blas FJ; Laboratorio de Simulacion Molecular y Quimica Computacional, CIQSO-Centro de Investigacion en Quimica Sostenible and Departamento de Ciencias Integradas, Universidad de Huelva, 21007 Huelva, Spain. Electronic address: felipe@uhu.es.
J Colloid Interface Sci ; 623: 354-367, 2022 Oct.
Article in En | MEDLINE | ID: mdl-35594594
HYPOTHESIS: Carbon dioxide hydrates are ice-like nonstoichiometric inclusion solid compounds with importance to global climate change, and gas transportation and storage. The thermodynamic and kinetic mechanisms that control carbon dioxide nucleation critically depend on hydrate-water interfacial free energy. Only two independent indirect experiments are available in the literature. Interfacial energies show large uncertainties due to the conditions at which experiments are performed. Under these circumstances, we hypothesize that accurate molecular models for water and carbon dioxide combined with computer simulation tools can offer an alternative but complementary way to estimate interfacial energies at coexistence conditions from a molecular perspective. CALCULATIONS: We have evaluated the interfacial free energy of carbon dioxide hydrates at coexistence conditions (three-phase equilibrium or dissociation line) implementing advanced computational methodologies, including the novel Mold Integration methodology. Our calculations are based on the definition of the interfacial free energy, standard statistical thermodynamic techniques, and the use of the most reliable and used molecular models for water (TIP4P/Ice) and carbon dioxide (TraPPE) available in the literature. FINDINGS: We find that simulations provide an interfacial energy value, at coexistence conditions, consistent with the experiments from its thermodynamic definition. Our calculations are reliable since are based on the use of two molecular models that accurately predict: (1) The ice-water interfacial free energy; and (2) the dissociation line of carbon dioxide hydrates. Computer simulation predictions provide alternative but reliable estimates of the carbon dioxide interfacial energy. Our pioneering work demonstrates that is possible to predict interfacial energies of hydrates from a truly computational molecular perspective and opens a new door to the determination of free energies of hydrates.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Type of study: Prognostic_studies Language: En Journal: J Colloid Interface Sci Year: 2022 Document type: Article Affiliation country: United kingdom Country of publication: United States

Full text: 1 Collection: 01-internacional Database: MEDLINE Type of study: Prognostic_studies Language: En Journal: J Colloid Interface Sci Year: 2022 Document type: Article Affiliation country: United kingdom Country of publication: United States