Your browser doesn't support javascript.
loading
Polygenic Resilience Modulates the Penetrance of Parkinson Disease Genetic Risk Factors.
Liu, Hui; Dehestani, Mohammad; Blauwendraat, Cornelis; Makarious, Mary B; Leonard, Hampton; Kim, Jonggeol J; Schulte, Claudia; Noyce, Alastair; Jacobs, Benjamin M; Foote, Isabelle; Sharma, Manu; Nalls, Mike; Singleton, Andrew; Gasser, Thomas; Bandres-Ciga, Sara.
Affiliation
  • Liu H; Department for Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tübingen and German Center of Neurodegenerative Diseases, Tübingen, Germany.
  • Dehestani M; Department for Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tübingen and German Center of Neurodegenerative Diseases, Tübingen, Germany.
  • Blauwendraat C; Laboratory of Neurogenetics, Molecular Genetics Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA.
  • Makarious MB; Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD, USA.
  • Leonard H; Laboratory of Neurogenetics, Molecular Genetics Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA.
  • Kim JJ; Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD, USA.
  • Schulte C; Data Tecnica International, Glen Echo, MD, USA.
  • Noyce A; Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK.
  • Jacobs BM; Data Tecnica International, Glen Echo, MD, USA.
  • Foote I; Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK.
  • Sharma M; Laboratory of Neurogenetics, Molecular Genetics Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA.
  • Nalls M; Department for Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tübingen and German Center of Neurodegenerative Diseases, Tübingen, Germany.
  • Singleton A; Preventive Neurology Unit, Wolfson Institute of Population Health, Queen Mary University of London, London, UK.
  • Gasser T; Preventive Neurology Unit, Wolfson Institute of Population Health, Queen Mary University of London, London, UK.
  • Bandres-Ciga S; Preventive Neurology Unit, Wolfson Institute of Population Health, Queen Mary University of London, London, UK.
Ann Neurol ; 92(2): 270-278, 2022 08.
Article in En | MEDLINE | ID: mdl-35599344
ABSTRACT

OBJECTIVE:

The aim of the current study is to understand why some individuals avoid developing Parkinson disease (PD) despite being at relatively high genetic risk, using the largest datasets of individual-level genetic data available.

METHODS:

We calculated polygenic risk score to identify controls and matched PD cases with the highest burden of genetic risk for PD in the discovery cohort (International Parkinson's Disease Genomics Consortium, 7,204 PD cases and 9,412 controls) and validation cohorts (Comprehensive Unbiased Risk Factor Assessment for Genetics and Environment in Parkinson's Disease, 8,968 cases and 7,598 controls; UK Biobank, 2,639 PD cases and 14,301 controls; Accelerating Medicines Partnership-Parkinson's Disease Initiative, 2,248 cases and 2,817 controls). A genome-wide association study meta-analysis was performed on these individuals to understand genetic variation associated with resistance to disease. We further constructed a polygenic resilience score, and performed multimarker analysis of genomic annotation (MAGMA) gene-based analyses and functional enrichment analyses.

RESULTS:

A higher polygenic resilience score was associated with a lower risk for PD (ß = -0.054, standard error [SE] = 0.022, p = 0.013). Although no single locus reached genome-wide significance, MAGMA gene-based analyses nominated TBCA as a putative gene. Furthermore, we estimated the narrow-sense heritability associated with resilience to PD (h2  = 0.081, SE = 0.035, p = 0.0003). Subsequent functional enrichment analysis highlighted histone methylation as a potential pathway harboring resilience alleles that could mitigate the effects of PD risk loci.

INTERPRETATION:

The present study represents a novel and comprehensive assessment of heritable genetic variation contributing to PD resistance. We show that a genetic resilience score can modify the penetrance of PD genetic risk factors and therefore protect individuals carrying a high-risk genetic burden from developing PD. ANN NEUROL 2022;92270-278.
Subject(s)

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Parkinson Disease Type of study: Etiology_studies / Prognostic_studies / Risk_factors_studies / Systematic_reviews Limits: Humans Language: En Journal: Ann Neurol Year: 2022 Document type: Article Affiliation country: Germany

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Parkinson Disease Type of study: Etiology_studies / Prognostic_studies / Risk_factors_studies / Systematic_reviews Limits: Humans Language: En Journal: Ann Neurol Year: 2022 Document type: Article Affiliation country: Germany