Your browser doesn't support javascript.
loading
Interleukin-1 and Nuclear Factor Kappa B Signaling Promote Breast Cancer Progression and Treatment Resistance.
Diep, Sydney; Maddukuri, Mahita; Yamauchi, Stephanie; Geshow, Ganamee; Delk, Nikki A.
Affiliation
  • Diep S; Biological Sciences Department, The University of Texas at Dallas, 800 West Campbell Road, FO-1, Richardson, TX 75080, USA.
  • Maddukuri M; Biological Sciences Department, The University of Texas at Dallas, 800 West Campbell Road, FO-1, Richardson, TX 75080, USA.
  • Yamauchi S; Biological Sciences Department, The University of Texas at Dallas, 800 West Campbell Road, FO-1, Richardson, TX 75080, USA.
  • Geshow G; Biological Sciences Department, The University of Texas at Dallas, 800 West Campbell Road, FO-1, Richardson, TX 75080, USA.
  • Delk NA; Biological Sciences Department, The University of Texas at Dallas, 800 West Campbell Road, FO-1, Richardson, TX 75080, USA.
Cells ; 11(10)2022 05 18.
Article in En | MEDLINE | ID: mdl-35626710
While meant for wound healing and immunity in response to injury and infection, inflammatory signaling is usurped by cancerous tumors to promote disease progression, including treatment resistance. The interleukin-1 (IL-1) inflammatory cytokine family functions in wound healing and innate and adaptive immunity. Two major, closely related IL-1 family members, IL-1α and IL-1ß, promote tumorigenic phenotypes and contribute to treatment resistance in cancer. IL-1 signaling converges on transactivation of the Nuclear Factor Kappa B (NF-κB) and Activator protein 1 (AP-1) transcription factors. NF-κB and AP-1 signaling are also activated by the inflammatory cytokine Tumor Necrosis Factor Alpha (TNFα) and microbe-sensing Toll-Like Receptors (TLRs). As reviewed elsewhere, IL-1, TNFα, and TLR can promote cancer progression through NF-κB or AP-1. In this review, we focus on what is known about the role of IL-1α and IL-1ß in breast cancer (BCa) progression and therapeutic resistance, and state evidence for the role of NF-κB in mediating IL-1-induced BCa progression and therapeutic resistance. We will present evidence that IL-1 promotes BCa cell proliferation, BCa stem cell expansion, angiogenesis, and metastasis. IL-1 also regulates intracellular signaling and BCa cell hormone receptor expression in a manner that confers a growth advantage to the tumor cells and allows BCa cells to evade therapy. As such, the IL-1 receptor antagonist, anakinra, is in clinical trials to treat BCa and multiple other cancer types. This article presents a review of the literature from the 1990s to the present, outlining the evidence supporting a role for IL-1 and IL-1-NF-κB signaling in BCa progression.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Breast Neoplasms / NF-kappa B / Interleukin-1 Limits: Female / Humans Language: En Journal: Cells Year: 2022 Document type: Article Affiliation country: United States Country of publication: Switzerland

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Breast Neoplasms / NF-kappa B / Interleukin-1 Limits: Female / Humans Language: En Journal: Cells Year: 2022 Document type: Article Affiliation country: United States Country of publication: Switzerland