Your browser doesn't support javascript.
loading
Accelerating the Fe(III)/Fe(II) cycle via enhanced electronic effect in NH2-MIL-88B(Fe)/TPB-DMTP-COF composite for boosting photo-Fenton degradation of sulfamerazine.
Hu, Xiaolong; Bao, Jingyu; Chen, Daiwen; Jalil Shah, Syed; Subhan, Sidra; Gong, Wenxue; Li, Wenyuan; Luan, Xinqi; Zhao, Zhongxing; Zhao, Zhenxia.
Affiliation
  • Hu X; MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China.
  • Bao J; MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China.
  • Chen D; MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China.
  • Jalil Shah S; MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China.
  • Subhan S; Institute of Chemical Science, University of Peshawar, Peshawar 25120, KP, Pakistan.
  • Gong W; MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China.
  • Li W; MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China.
  • Luan X; MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China.
  • Zhao Z; MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China.
  • Zhao Z; MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China. Electronic address: zhaozhenxia@gxu.edu.cn
J Colloid Interface Sci ; 624: 121-136, 2022 Oct 15.
Article in En | MEDLINE | ID: mdl-35660881
In the photo-Fenton reactions, fast recombination of photoinduced electrons and holes in Fe-based metal-organic frameworks (Fe-MOFs) slows Fe(III)/Fe(II) cycle, which remains big challenge that significantly retards the overall process. Herein, NH2-MIL-88B(Fe) (NM88) was modified with 3,5-diaminobenzoic acid (DB) and TPB-DMTP-COF (COF-OMe) to in situ construct NM88(DB)0.85/COF-OMe composite that could strongly harvest the visible light for photo-Fenton degradation of sulfamerazine (SMR). With the addition of DB, electron-donating effect of NM88 was strengthened, which then promoted amino groups to react with aldehyde groups (Schiff-base), and thus highly facilitated the interfacial contact between NM88 and COF-OMe. Such modifications increased the degradation rate constants for NM88(DB)0.85/COF-OMe to 15.1 and 17.3 times that of NM88 and COF-OMe respectively with good reusability. Moreover, the catalyst exhibited 32-170 times higher degradation kinetics in comparison to other reported catalysts. Results showed that due to the Schiff-base reaction between NM88(DB) and COF-OMe, electron density on Fe(III) was decreased; and the photogenerated electrons of COF-OMe moved to NM88(DB) to reduce Fe(III), thus resulting in the generation of highly active Fe(II) and ·OH species. Furthermore, the main reactive species were determined to be ·OH and ·O2- by trapping experiments, and a possible mechanism of the degradation system followed Z-scheme charge transfer.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Sulfamerazine / Ferric Compounds Language: En Journal: J Colloid Interface Sci Year: 2022 Document type: Article Affiliation country: China Country of publication: United States

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Sulfamerazine / Ferric Compounds Language: En Journal: J Colloid Interface Sci Year: 2022 Document type: Article Affiliation country: China Country of publication: United States