Your browser doesn't support javascript.
loading
Synthesis and Antibacterial Activity of Spiro[4H-pyran-3,3'-oxindoles] Catalyzed by Tröger's Base Derivative.
Liu, Run-Xin; Liang, Yan-Ni; Ren, Xuan-Xuan; Wu, Qian-Qian; Huang, Can; Cao, Shi-Nian; Wan, Yu; Zhou, Sheng-Liang; Yuan, Rui; Wu, Hui.
Affiliation
  • Liu RX; School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, P.R. China.
  • Liang YN; School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, P.R. China.
  • Ren XX; School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, P.R. China.
  • Wu QQ; School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, P.R. China.
  • Huang C; Jiangsu Province Engineering Research Center of Cardiovascular Drugs Targeting Endothelial Cell, The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, P.R. China.
  • Cao SN; Jiangsu Province Engineering Research Center of Cardiovascular Drugs Targeting Endothelial Cell, The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, P.R. China.
  • Wan Y; Jiangsu Province Engineering Research Center of Cardiovascular Drugs Targeting Endothelial Cell, The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, P.R. China.
  • Zhou SL; Jiangsu Province Engineering Research Center of Cardiovascular Drugs Targeting Endothelial Cell, The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, P.R. China.
  • Yuan R; Jiangsu Province Engineering Research Center of Cardiovascular Drugs Targeting Endothelial Cell, The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, P.R. China.
  • Wu H; Jiangsu Province Engineering Research Center of Cardiovascular Drugs Targeting Endothelial Cell, The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, P.R. China.
Curr Org Synth ; 20(8): 870-879, 2023.
Article in En | MEDLINE | ID: mdl-35702794
ABSTRACT

OBJECTIVE:

Two classes of spiro[4H-pyran-3,3'-oxindole] derivatives were prepared via the one pot reaction of chain diketones (1-phenyl-1,3-butanedione or dibenzoyl methane), substituted isatins and malononitrile successfully catalyzed by a Tröger's base derivative 1b (5,12-dimethyl-3,10-diphenyl-bis-1H-pyrazol[b,f][4,5]-1,5-diazadicyclo[3.3.1]-2,6-octadiene). The antibacterial activity of products against three wild-type bacteria (B. subtilis, S. aureus, and E. coli) and two resistant strains (Methicillin-resistant S. aureus (18H8) and E. coli carrying the BlaNDM-1 gene (18H5)) was evaluated using the minimum inhibitory concentration (MIC)..

METHODS:

1-Phenyl-1,3-butanedione 2 or dibenzoylmethane 2' (0.42 mmol), substituted isatin 3 (0.4 mmol), malononitrile 4 (0.8 mmol), Tröger's base derivative 1b (0.08 mmol), and 10 mL of acetonitrile were added to a 50 mL round bottom flask and refluxed. After the completion (TLC monitoring), water (10 mL) was added to the reaction mixture; pH = 7 was adjusted with saturated NaHCO3 (aq.), and the mixture was extracted with CH2Cl2 (50 mL × 3). Organic layers were combined and dried with anhydrous Na2SO4; the solvent was removed under vacuum, and the residue was purified by column chromatography (VDCM VMeOH = 80 1) to afford product 5. The antibacterial activity was tested by the MTT method.

RESULTS:

Seventeen spiro[4H-pyran-3,3'-oxindole] derivatives were synthesized through the reaction of chain diketones (1-phenyl-1,3-butanedione or dibenzoyl methane), substituted isatins, and malononitrile in one-pot in medium to high yields. Four compounds showed antibacterial activity, and two of them showed the same activity as the positive control Ceftazidime on S. aureus (MIC = 12.5 µg/mL).

CONCLUSION:

Two classes of spiro[4H-pyran-3,3'-oxindole] derivatives were prepared, and their antibacterial activity was evaluated. Tröger's base derivative 1b (5,12-dimethyl-3,10-diphenyl-bis-1H-pyrazol[b,f][4,5]- 1,5-diazadicyclo[3,3,1]-2,6-octadiene) was used as an efficient organocatalyst for the reaction of low reactive chain diketones (1-phenyl-1,3-butanedione or dibenzoyl methane), substituted isatins, and malononitrile in one-pot successfully and effectively by providing multiple active sites and alkaline environment. By the theoretical calculation, we explained the possible reaction sequence and mechanism. Due to the superiority and high efficiency of the TB framework as an organocatalyst, the reaction showed many advantages, including mild reaction conditions, low catalyst loading, and a wide substrate range. It expanded the application of Tröger's base to the multicomponent reaction in organocatalysis. Some products were screened due to their high antibacterial activity in vitro, showing their potential in new antibacterial drug development.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Pyrans / Methicillin-Resistant Staphylococcus aureus Language: En Journal: Curr Org Synth Year: 2023 Document type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Pyrans / Methicillin-Resistant Staphylococcus aureus Language: En Journal: Curr Org Synth Year: 2023 Document type: Article