Your browser doesn't support javascript.
loading
Comparison of the disinfection efficacy between ferrate(VI) and chlorine in secondary effluent.
Mao, Yu; Chen, Zhuo; Zhang, Zi-Wei; Xue, Song; Lu, Yun; Shi, Qi; Cao, Ke-Fan; Chen, Xiao-Wen; Wu, Yin-Hu; Hu, Hong-Ying.
Affiliation
  • Mao Y; Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), Beijing Laboratory for Environmental Frontier Technologies, School of Environment, Tsinghua University, Beijing 100084, PR C
  • Chen Z; Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), Beijing Laboratory for Environmental Frontier Technologies, School of Environment, Tsinghua University, Beijing 100084, PR C
  • Zhang ZW; Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), Beijing Laboratory for Environmental Frontier Technologies, School of Environment, Tsinghua University, Beijing 100084, PR C
  • Xue S; Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), Beijing Laboratory for Environmental Frontier Technologies, School of Environment, Tsinghua University, Beijing 100084, PR C
  • Lu Y; Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), Beijing Laboratory for Environmental Frontier Technologies, School of Environment, Tsinghua University, Beijing 100084, PR C
  • Shi Q; Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), Beijing Laboratory for Environmental Frontier Technologies, School of Environment, Tsinghua University, Beijing 100084, PR C
  • Cao KF; Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), Beijing Laboratory for Environmental Frontier Technologies, School of Environment, Tsinghua University, Beijing 100084, PR C
  • Chen XW; Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), Beijing Laboratory for Environmental Frontier Technologies, School of Environment, Tsinghua University, Beijing 100084, PR C
  • Wu YH; Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), Beijing Laboratory for Environmental Frontier Technologies, School of Environment, Tsinghua University, Beijing 100084, PR C
  • Hu HY; Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), Beijing Laboratory for Environmental Frontier Technologies, School of Environment, Tsinghua University, Beijing 100084, PR C
Sci Total Environ ; 848: 157712, 2022 Nov 20.
Article in En | MEDLINE | ID: mdl-35908691
ABSTRACT
Disinfection is essential for the microbial safety of reclaimed water. Traditional chlorine disinfection leads to secondary problems such as disinfection by-products and chlorine-resistant bacteria. Ferrate (Fe(VI)) is a novel green disinfectant. However, research on the disinfection characteristics of Fe(VI) remains insufficient. This study compared the disinfection efficacy between Fe(VI) and chlorine in secondary effluent, including the inactivation efficiency of coliforms and heterotrophic bacteria and the control effect on typical chlorine-resistant bacteria. The results showed that Fe(VI) was more effective than chlorine in inactivating Escherichia coli and total coliforms at low doses, whereas chlorine was more effective than Fe(VI) in inactivating heterotrophic bacteria. A severe trailing phenomenon was observed in Fe(VI) disinfection. Based on bacterial community structure analysis, Fe(VI) was also found to be capable of controlling the relative abundance of some chlorine-resistant bacteria such as Sphingomonas, Bacillus, Mycobacterium and Legionella except for Pseudomonas. The results of this study could have implications in evaluating Fe(VI) disinfection ability and optimizing Fe(VI) dosing for disinfection.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Water Purification / Disinfectants Language: En Journal: Sci Total Environ Year: 2022 Document type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Water Purification / Disinfectants Language: En Journal: Sci Total Environ Year: 2022 Document type: Article
...