Your browser doesn't support javascript.
loading
Playing hide and seek: Distribution with depth of potentially harmful epibenthic dinoflagellates of Southern El Hierro Island, Canary Islands (NE Atlantic).
Fernández-Zabala, Juan; Amorim, Ana; Tuya, Fernando; Herrera, Rogelio; Soler-Onís, Emilio.
Affiliation
  • Fernández-Zabala J; Observatorio Canario de HABs, FCPCT-ULPGC, Parque Científico Tecnológico Marino de Taliarte, 35214 Taliarte, Las Palmas, Canary Islands, Spain; Grupo de Ecofisiología Marina (EOMAR), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Campus Universitario de Tafira, 35017, Las Palmas, Canary Isla
  • Amorim A; MARE-Centro de Ciências do Mar e do Ambiente, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal.
  • Tuya F; Grupo en Biodiversidad y Conservación (BIOCON), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, 35017 Las Palmas, Canary Islands, Spain.
  • Herrera R; Servicio de Biodiversidad, Viceconsejería de Medio Ambiente, Consejería de Agricultura, Ganadería, Pesca y Medio Ambiente, 35003, Las Palmas, Canary Islands, Spain.
  • Soler-Onís E; Observatorio Canario de HABs, FCPCT-ULPGC, Parque Científico Tecnológico Marino de Taliarte, 35214 Taliarte, Las Palmas, Canary Islands, Spain; Grupo de Ecofisiología Marina (EOMAR), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Campus Universitario de Tafira, 35017, Las Palmas, Canary Isla
Harmful Algae ; 117: 102271, 2022 08.
Article in En | MEDLINE | ID: mdl-35944952
ABSTRACT
The study of epibenthic assemblages of harmful dinoflagellates (BHABs) is commonly conducted in shallow infralittoral zones (0 - 5 m) and are seldom investigated at deeper waters. In this study, the distribution with depth of five BHAB genera (Gambierdiscus, Ostreopsis, Prorocentrum, Coolia and Amphidinium) was investigated in the south of El Hierro island (Canary Islands, Spain). Sampling involved the use of a standardized artificial substrate deployed at three depth levels (5, 10 and 20 m) that were visited at three different times throughout one year. The influence of three depth-correlated abiotic parameters, i.e. light, water motion and water temperature, on the vertical and seasonal distribution of the BHAB assemblage was also assessed. Two vertical distribution patterns were observed consistently through time cell abundances of Ostreopsis and Coolia decreased from 5 to 20 m while those of Gambierdiscus, Prorocentrum and Amphidinium showed the reverse pattern, although significant differences were only observed between 5 and 10 - 20 m depth. In April, two members of the latter group, Gambierdiscus and Amphidinium, were even absent at 5 m depth. The recorded environmental parameters explained a high percentage of the observed distribution. In particular, model selection statistical approaches indicated that water motion was the most significant parameter. An analysis of Gambierdiscus at species level revealed the co-occurrence of four species in the study area G. australes, G. belizeanus, G. caribaeus and G. excentricus. The species G. excentricus, reported here for the first time in El Hierro, showed a more restricted vertical and seasonal distribution than the other species, which may explain not being detected in previous studies in the area. The results obtained in this study highlight the importance of considering a wider depth range and different seasons of the year when investigating the ecology of BHABs and assessing their risk and impacts on human health and the environment. Only then, efficient monitoring programs will be implemented in the Canary Islands and globally in areas affected by these events.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Dinoflagellida Limits: Humans Country/Region as subject: Europa Language: En Journal: Harmful Algae Year: 2022 Document type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Dinoflagellida Limits: Humans Country/Region as subject: Europa Language: En Journal: Harmful Algae Year: 2022 Document type: Article