Your browser doesn't support javascript.
loading
Photosynthetic microbial fuel cells for methanol treatment using graphene electrodes.
Jawaharraj, Kalimuthu; Sigdel, Pawan; Gu, Zhengrong; Muthusamy, Govarthanan; Sani, Rajesh Kumar; Gadhamshetty, Venkataramana.
Affiliation
  • Jawaharraj K; Civil and Environmental Engineering, South Dakota Mines, 501 E. St. Joseph Street, Rapid City, SD, 57701, USA; BuG ReMeDEE Consortia, South Dakota Mines, 501 E. St. Joseph Street, Rapid City, SD, 57701, USA; 2D-materials for Biofilm Engineering, Science and Technology (2DBEST) Center, South Dakota M
  • Sigdel P; Civil and Environmental Engineering, South Dakota Mines, 501 E. St. Joseph Street, Rapid City, SD, 57701, USA; 2D-materials for Biofilm Engineering, Science and Technology (2DBEST) Center, South Dakota Mines, 501 E. St. Joseph Street, Rapid City, SD, 57701, USA.
  • Gu Z; Agricultural and Biosystems Engineering, South Dakota State University, 2100 University Station, Brookings, SD, 57701, USA; 2D-materials for Biofilm Engineering, Science and Technology (2DBEST) Center, South Dakota Mines, 501 E. St. Joseph Street, Rapid City, SD, 57701, USA.
  • Muthusamy G; Department of Environmental Engineering, Kyungpook National University, Daegu, South Korea, 80 Daehak-ro, Buk-gu, Daegu, South Korea; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600 077, Tamil Nadu, India.
  • Sani RK; Chemical and Biological Engineering, South Dakota Mines, 501 E. St. Joseph Street, Rapid City, SD, 57701, USA; BuG ReMeDEE Consortia, South Dakota Mines, 501 E. St. Joseph Street, Rapid City, SD, 57701, USA; 2D-materials for Biofilm Engineering, Science and Technology (2DBEST) Center, South Dakota M
  • Gadhamshetty V; Civil and Environmental Engineering, South Dakota Mines, 501 E. St. Joseph Street, Rapid City, SD, 57701, USA; BuG ReMeDEE Consortia, South Dakota Mines, 501 E. St. Joseph Street, Rapid City, SD, 57701, USA; 2D-materials for Biofilm Engineering, Science and Technology (2DBEST) Center, South Dakota M
Environ Res ; 215(Pt 1): 114045, 2022 12.
Article in En | MEDLINE | ID: mdl-35995227
ABSTRACT
Photosynthetic microbial fuel cells (pMFC) represent a promising approach for treating methanol (CH3OH) wastewater. However, their use is constrained by a lack of knowledge on the extracellular electron transfer capabilities of photosynthetic methylotrophs, especially when coupled with metal electrodes. This study assessed the CH3OH oxidation capabilities of Rhodobacter sphaeroides 2.4.1 in two-compartment pMFCs. A 3D nickel (Ni) foam modified with plasma-grown graphene (Gr) was used as an anode, nitrate mineral salts media (NMS) supplemented with 0.1% CH3OH as anolyte, carbon brush as cathode, and 50 mM ferricyanide as catholyte. Two simultaneous pMFCs that used bare Ni foam and carbon felt served as controls. The Ni/Gr electrode registered a two-fold lower charge transfer resistance (0.005 kΩ cm2) and correspondingly 16-fold higher power density (141 mW/m2) compared to controls. The underlying reasons for the enhanced performance of R. sphaeroides at the graphene interface were discerned. The real-time polymerase chain reaction (PCR) analysis revealed the upregulation of cytochrome c oxidase, aa3 type, subunit I gene, and Flp pilus assembly protein genes in the sessile cells compared to their planktonic counterparts. The key EET pathways used for sustaining CH3OH oxidation were discussed.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Bioelectric Energy Sources / Graphite Language: En Journal: Environ Res Year: 2022 Document type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Bioelectric Energy Sources / Graphite Language: En Journal: Environ Res Year: 2022 Document type: Article
...