Your browser doesn't support javascript.
loading
Grain engineering for improved charge carrier transport in two-dimensional lead-free perovskite field-effect transistors.
Wang, Shuanglong; Frisch, Sabine; Zhang, Heng; Yildiz, Okan; Mandal, Mukunda; Ugur, Naz; Jeong, Beomjin; Ramanan, Charusheela; Andrienko, Denis; Wang, Hai I; Bonn, Mischa; Blom, Paul W M; Kivala, Milan; Pisula, Wojciech; Marszalek, Tomasz.
Affiliation
  • Wang S; Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany. pisula@mpip-mainz.mpg.de.
  • Frisch S; Organisch-Chemisches Institut, Centre for Advanced Materials, Ruprecht-Karls-Universität Heidelberg, 69120 Heidelberg, Germany.
  • Zhang H; Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany. pisula@mpip-mainz.mpg.de.
  • Yildiz O; Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany. pisula@mpip-mainz.mpg.de.
  • Mandal M; Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany. pisula@mpip-mainz.mpg.de.
  • Ugur N; Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany. pisula@mpip-mainz.mpg.de.
  • Jeong B; Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany. pisula@mpip-mainz.mpg.de.
  • Ramanan C; Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany. pisula@mpip-mainz.mpg.de.
  • Andrienko D; Department of Physics and Astronomy, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, Netherlands.
  • Wang HI; Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany. pisula@mpip-mainz.mpg.de.
  • Bonn M; Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany. pisula@mpip-mainz.mpg.de.
  • Blom PWM; Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany. pisula@mpip-mainz.mpg.de.
  • Kivala M; Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany. pisula@mpip-mainz.mpg.de.
  • Pisula W; Organisch-Chemisches Institut, Centre for Advanced Materials, Ruprecht-Karls-Universität Heidelberg, 69120 Heidelberg, Germany.
  • Marszalek T; Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany. pisula@mpip-mainz.mpg.de.
Mater Horiz ; 9(10): 2633-2643, 2022 Oct 03.
Article in En | MEDLINE | ID: mdl-35997011
ABSTRACT
Controlling crystal growth and reducing the number of grain boundaries are crucial to maximize the charge carrier transport in organic-inorganic perovskite field-effect transistors (FETs). Herein, the crystallization and growth kinetics of a Sn(II)-based 2D perovskite, using 2-thiopheneethylammonium (TEA) as the organic cation spacer, were effectively regulated by the hot-casting method. With increasing crystalline grain size, the local charge carrier mobility is found to increase moderately from 13 cm2 V-1 s-1 to 16 cm2 V-1 s-1, as inferred from terahertz (THz) spectroscopy. In contrast, the FET operation parameters, including mobility, threshold voltage, hysteresis, and subthreshold swing, improve substantially with larger grain size. The optimized 2D (TEA)2SnI4 transistor exhibits hole mobility of up to 0.34 cm2 V-1 s-1 at 295 K and a higher value of 1.8 cm2 V-1 s-1 at 100 K. Our work provides an important insight into the grain engineering of 2D perovskites for high-performance FETs.

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Mater Horiz Year: 2022 Document type: Article Affiliation country: Germany

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Mater Horiz Year: 2022 Document type: Article Affiliation country: Germany