Influence of particle wettability on foam formation in honey.
J Phys Condens Matter
; 34(45)2022 09 15.
Article
in En
| MEDLINE
| ID: mdl-36055236
The rising level of obesity is often attributed to high sugar and/or fat consumption. Therefore, the food industry is constantly searching for ways to reduce or eliminate sugar or fat in food products. Therefore, honey foam, which contains little sugar and no fat, can be used as cake, cracker or bread spread instead of butter or margarine which contains a substantial amount of fat or jam that contains a substantial amount of sugar. Small solid particles (nanometers to micrometers) of suitable wettability are now considered outstanding foam-stabilizing agents. However, while the degree of particle wettability necessary to obtain very stable aqueous and nonaqueous foams is well-known, that needed to obtain very stable honey foam is unknown. In this study, the influence of the degree of wettability of fumed silica particles, indicated by their % SiOH (14-100), was investigated in honey in relation to foam formation and foam stability. The honephilic particles (61%-100% SiOH) formed particle dispersion in honey, while foams were obtained with the honephobic particles (14%-50% SiOH). The thread-off between particle dispersion and foam formation occurs at 50% SiOH, meaning foam formation in honey is possible when the particles are at least 50% honephobic. At relatively low particle concentration <1 wt.%, foam volume decreases with increasing honephobicity, but increases with honephobicity at relatively high concentration >1 wt.%. Also, as particle concentration increases, the shape of the air bubbles in the foam changes from spherical to non-spherical. After a little drainage, the foams remain stable to drainage and did not coalesce substantially for more than six months. These findings will guide the formulation of edible Pickering honey foams.
Key words
Full text:
1
Collection:
01-internacional
Database:
MEDLINE
Main subject:
Honey
Language:
En
Journal:
J Phys Condens Matter
Journal subject:
BIOFISICA
Year:
2022
Document type:
Article
Affiliation country:
Nigeria
Country of publication:
United kingdom