Your browser doesn't support javascript.
loading
Classification of Tonic Pain Experience based on Phase Connectivity in the Alpha Frequency Band of the Electroencephalogram using Convolutional Neural Networks.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 3542-3545, 2022 07.
Article in En | MEDLINE | ID: mdl-36086245
The complexity of brain activity involved in the generation of the experience of pain makes it hard to identify neural markers able to predict pain states. The within and between subjects variability of pain hinders the predictive potential of machine learning models trained across participants. This challenge can be tackled by implementing deep learning classifiers based on convolutional neural networks (CNNs). We targeted phase-based connectivity in the alpha band recorded with electroencephalography (EEG) during resting states and sensory conditions (eyes open [O] and closed [C] as resting states, and warm [W] and hot [H] water as sensory conditions). Connectivity features were extracted and re-organized as square matrices, because CNNs are effective in detecting the patterns from 2D data. To assess the classifier performance we implemented two complementary approaches: we 1) trained and tested the classifier with data from all participants, and 2) using a leave-one-out approach, that is excluding one participant at a time during training while using their data as a test set. The accuracy of binary classification between pain condition (H) and eyes open resting state (O) was 94.16% with the first approach, and 61.01 % with the leave-one-out approach. Clinical relevance-Further validation of the CNN classifier may help caregivers track the rehabilitation of chronic pain patients and dynamically modify the therapy. Further refinement of the model may allow its application in critical care setting with unresponsive patients to identify pain-like states otherwise incommunicable to medical personnel.
Subject(s)

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Neural Networks, Computer / Electroencephalography Type of study: Diagnostic_studies / Prognostic_studies Limits: Humans Language: En Journal: Annu Int Conf IEEE Eng Med Biol Soc Year: 2022 Document type: Article Country of publication: United States

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Neural Networks, Computer / Electroencephalography Type of study: Diagnostic_studies / Prognostic_studies Limits: Humans Language: En Journal: Annu Int Conf IEEE Eng Med Biol Soc Year: 2022 Document type: Article Country of publication: United States