Your browser doesn't support javascript.
loading
Privacy-Preserving Deep Learning NLP Models for Cancer Registries.
Alawad, Mohammed; Yoon, Hong-Jun; Gao, Shang; Mumphrey, Brent; Wu, Xiao-Cheng; Durbin, Eric B; Jeong, Jong Cheol; Hands, Isaac; Rust, David; Coyle, Linda; Penberthy, Lynne; Tourassi, Georgia.
Affiliation
  • Alawad M; Computational Sciences and Engineering Division, Health Data Sciences Institute, Oak Ridge National Laboratory, Oak Ridge, TN, 37831.
  • Yoon HJ; Computational Sciences and Engineering Division, Health Data Sciences Institute, Oak Ridge National Laboratory, Oak Ridge, TN, 37831.
  • Gao S; Computational Sciences and Engineering Division, Health Data Sciences Institute, Oak Ridge National Laboratory, Oak Ridge, TN, 37831.
  • Mumphrey B; Louisiana Tumor Registry, Louisiana State University Health Sciences Center School of Public Health, New Orleans, LA, 70112.
  • Wu XC; Louisiana Tumor Registry, Louisiana State University Health Sciences Center School of Public Health, New Orleans, LA, 70112.
  • Durbin EB; Kentucky Cancer Registry, University of Kentucky, Lexington, KY, 40506.; Division of Biomedical Informatics, College of Medicine, University of Kentucky, Lexington, KY, 40506.; Cancer Research Informatics Shared Resource Facility, Markey Cancer Center, University of Kentucky, Lexington, KY, 40506.
  • Jeong JC; Division of Biomedical Informatics, College of Medicine, University of Kentucky, Lexington, KY, 40506.; Cancer Research Informatics Shared Resource Facility, Markey Cancer Center, University of Kentucky, Lexington, KY, 40506.
  • Hands I; Kentucky Cancer Registry, University of Kentucky, Lexington, KY, 40506.; Cancer Research Informatics Shared Resource Facility, Markey Cancer Center, University of Kentucky, Lexington, KY, 40506.
  • Rust D; Kentucky Cancer Registry, University of Kentucky, Lexington, KY, 40506.
  • Coyle L; Information Management Services Inc, Calverton, MD, 20705.
  • Penberthy L; Surveillance Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute, Bethesda, MD, USA.
  • Tourassi G; Computational Sciences and Engineering Division, Health Data Sciences Institute, Oak Ridge National Laboratory, Oak Ridge, TN, 37831.
IEEE Trans Emerg Top Comput ; 9(3): 1219-1230, 2021.
Article in En | MEDLINE | ID: mdl-36117774
ABSTRACT
Population cancer registries can benefit from Deep Learning (DL) to automatically extract cancer characteristics from the high volume of unstructured pathology text reports they process annually. The success of DL to tackle this and other real-world problems is proportional to the availability of large labeled datasets for model training. Although collaboration among cancer registries is essential to fully exploit the promise of DL, privacy and confidentiality concerns are main obstacles for data sharing across cancer registries. Moreover, DL for natural language processing (NLP) requires sharing a vocabulary dictionary for the embedding layer which may contain patient identifiers. Thus, even distributing the trained models across cancer registries causes a privacy violation issue. In this paper, we propose DL NLP model distribution via privacy-preserving transfer learning approaches without sharing sensitive data. These approaches are used to distribute a multitask convolutional neural network (MT-CNN) NLP model among cancer registries. The model is trained to extract six key cancer characteristics - tumor site, subsite, laterality, behavior, histology, and grade - from cancer pathology reports. Using 410,064 pathology documents from two cancer registries, we compare our proposed approach to conventional transfer learning without privacy-preserving, single-registry models, and a model trained on centrally hosted data. The results show that transfer learning approaches including data sharing and model distribution outperform significantly the single-registry model. In addition, the best performing privacy-preserving model distribution approach achieves statistically indistinguishable average micro- and macro-F1 scores across all extraction tasks (0.823,0.580) as compared to the centralized model (0.827,0.585).
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Type of study: Prognostic_studies Language: En Journal: IEEE Trans Emerg Top Comput Year: 2021 Document type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Type of study: Prognostic_studies Language: En Journal: IEEE Trans Emerg Top Comput Year: 2021 Document type: Article