Your browser doesn't support javascript.
loading
Monodomain Liquid Crystals of Two-Dimensional Sheets by Boundary-Free Sheargraphy.
Cao, Min; Liu, Senping; Zhu, Qingli; Wang, Ya; Ma, Jingyu; Li, Zeshen; Chang, Dan; Zhu, Enhui; Ming, Xin; Puchtler, Florian; Breu, Josef; Wu, Ziliang; Liu, Yingjun; Jiang, Yanqiu; Xu, Zhen; Gao, Chao.
Affiliation
  • Cao M; MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials and Technologies of Zhejiang Province, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, People's Republic of China.
  • Liu S; MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials and Technologies of Zhejiang Province, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, People's Republic of China.
  • Zhu Q; MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials and Technologies of Zhejiang Province, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, People's Republic of China.
  • Wang Y; MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials and Technologies of Zhejiang Province, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, People's Republic of China.
  • Ma J; MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials and Technologies of Zhejiang Province, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, People's Republic of China.
  • Li Z; MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials and Technologies of Zhejiang Province, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, People's Republic of China.
  • Chang D; MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials and Technologies of Zhejiang Province, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, People's Republic of China.
  • Zhu E; MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials and Technologies of Zhejiang Province, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, People's Republic of China.
  • Ming X; MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials and Technologies of Zhejiang Province, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, People's Republic of China.
  • Puchtler F; Bavarian Polymer Institute and Department of Chemistry, University of Bayreuth, Universitätsstrasse 30, 95440, Bayreuth, Germany.
  • Breu J; Bavarian Polymer Institute and Department of Chemistry, University of Bayreuth, Universitätsstrasse 30, 95440, Bayreuth, Germany.
  • Wu Z; MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials and Technologies of Zhejiang Province, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, People's Republic of China.
  • Liu Y; MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials and Technologies of Zhejiang Province, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, People's Republic of China. yingjunl
  • Jiang Y; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, People's Republic of China. yingjunliu@zju.edu.cn.
  • Xu Z; MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials and Technologies of Zhejiang Province, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, People's Republic of China. jiangyan
  • Gao C; State Key Lab of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, People's Republic of China. jiangyanqiu@zju.edu.cn.
Nanomicro Lett ; 14(1): 192, 2022 Sep 19.
Article in En | MEDLINE | ID: mdl-36121520
ABSTRACT
Eliminating topological defects to achieve monodomain liquid crystals is highly significant for the fundamental studies of soft matter and building long-range ordered materials. However, liquid crystals are metastable and sensitive to external stimuli, such as flow, confinement, and electromagnetic fields, which cause their intrinsic polycrystallinity and topological defects. Here, we achieve the monodomain liquid crystals of graphene oxide over 30 cm through boundary-free sheargraphy. The obtained monodomain liquid crystals exhibit large-area uniform alignment of sheets, which has the same optical polarized angle and intensity. The monodomain liquid crystals provide bidirectionally ordered skeletons, which can be applied as lightweight thermal management materials with bidirectionally high thermal and electrical conductivity. Furthermore, we extend the controllable topology of two-dimensional colloids by introducing singularities and disclinations in monodomain liquid crystals. Topological structures with defect strength from - 2 to + 2 were realized. This work provides a facile methodology to study the structural order of soft matter at a macroscopic level, facilitating the fabrication of metamaterials with tunable and highly anisotropic architectures.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Nanomicro Lett Year: 2022 Document type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Nanomicro Lett Year: 2022 Document type: Article