Your browser doesn't support javascript.
loading
A 92 protein inflammation panel performed on sonicate fluid differentiates periprosthetic joint infection from non-infectious causes of arthroplasty failure.
Fisher, Cody R; Salmons, Harold I; Mandrekar, Jay; Greenwood-Quaintance, Kerryl E; Abdel, Matthew P; Patel, Robin.
Affiliation
  • Fisher CR; Department of Immunology, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, USA.
  • Salmons HI; Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
  • Mandrekar J; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA.
  • Greenwood-Quaintance KE; Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
  • Abdel MP; Department of Quantitative Sciences, Mayo Clinic, Rochester, MN, USA.
  • Patel R; Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
Sci Rep ; 12(1): 16135, 2022 09 27.
Article in En | MEDLINE | ID: mdl-36167782
Periprosthetic joint infection (PJI) is a major complication of total joint arthroplasty, typically necessitating surgical intervention and prolonged antimicrobial therapy. Currently, there is no perfect assay for PJI diagnosis. Proteomic profiling of sonicate fluid has the potential to differentiate PJI from non-infectious arthroplasty failure (NIAF) and possibly clinical subsets of PJI and/or NIAF. In this study, 200 sonicate fluid samples, including 90 from subjects with NIAF (23 aseptic loosening, 35 instability, 10 stiffness, five osteolysis, and 17 other) and 110 from subjects with PJI (40 Staphylococcus aureus, 40 Staphylococcus epidermidis, 10 Staphylococcus lugdunensis, 10 Streptococcus agalactiae, and 10 Enterococcus faecalis) were analyzed by proximity extension assay using the 92 protein Inflammation Panel from Olink Proteomics. Thirty-seven of the 92 proteins examined, including CCL20, OSM, EN-RAGE, IL8, and IL6, were differentially expressed in PJI versus NIAF sonicate fluid samples, with none of the 92 proteins differentially expressed between staphylococcal versus non-staphylococcal PJI, nor between the different types of NIAF studied. IL-17A and CCL11 were differentially expressed between PJI caused by different bacterial species, with IL-17A detected at higher levels in S. aureus compared to S. epidermidis and S. lugdunensis PJI, and CCL11 detected at higher levels in S. epidermidis compared to S. aureus and S. agalactiae PJI. Receiver operative characteristic curve analysis identified individual proteins and combinations of proteins that could differentiate PJI from NIAF. Overall, proteomic profiling using this small protein panel was able to differentiate between PJI and NIAF sonicate samples and provide a better understanding of the immune response during arthroplasty failure.
Subject(s)

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Arthritis, Infectious / Prosthesis-Related Infections / Arthroplasty, Replacement, Hip / Staphylococcus lugdunensis Type of study: Etiology_studies / Prognostic_studies Limits: Humans Language: En Journal: Sci Rep Year: 2022 Document type: Article Affiliation country: United States Country of publication: United kingdom

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Arthritis, Infectious / Prosthesis-Related Infections / Arthroplasty, Replacement, Hip / Staphylococcus lugdunensis Type of study: Etiology_studies / Prognostic_studies Limits: Humans Language: En Journal: Sci Rep Year: 2022 Document type: Article Affiliation country: United States Country of publication: United kingdom