Your browser doesn't support javascript.
loading
Distepharinamide, a novel dimeric proaporphine alkaloid from Diploclisia glaucescens, inhibits the differentiation and proliferative expansion of CD4+Foxp3+ regulatory T cells.
Chen, Feng-Yang; Geng, Chang-An; Chou, Chon-Kit; Zheng, Jing-Bin; Yang, Yang; Wang, Yi-Fei; Li, Tian-Ze; Li, Ping; Chen, Ji-Jun; Chen, Xin.
Affiliation
  • Chen FY; State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Science, University of Macau, Macau 999078, China; School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou 310053, China.
  • Geng CA; State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
  • Chou CK; State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Science, University of Macau, Macau 999078, China.
  • Zheng JB; State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Science, University of Macau, Macau 999078, China.
  • Yang Y; State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Science, University of Macau, Macau 999078, China.
  • Wang YF; State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Science, University of Macau, Macau 999078, China.
  • Li TZ; State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
  • Li P; State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Science, University of Macau, Macau 999078, China.
  • Chen JJ; State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China. Electronic address: chenjj@mail.kib.ac.cn.
  • Chen X; State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Science, University of Macau, Macau 999078, China. Electronic address: xchen@umac.mo.
Phytomedicine ; 107: 154482, 2022 Dec.
Article in En | MEDLINE | ID: mdl-36202057
ABSTRACT

BACKGROUND:

CD4+Foxp3+ regulatory T cells (Tregs) represent the primary cellular mechanism of tumor immune evasion. Elimination of Treg activity by the pharmacological agent may enhance anti-tumor immune responses. However, Treg-eliminating agents, especially those with small molecules, are rarely reported.

PURPOSE:

To identify small molecule inhibitors of Treg cells from natural products.

METHODS:

Compounds from Diploclisia glaucescens were isolated by column chromatography, and structures were identified by spectroscopic evidence and quantum calculations. The tet-On system for Foxp3-GFP expression in Jurkat T cells was generated to screen Treg inhibitors based on Foxp3 expression. The effect of the compound on TNF-induced proliferative expansion of naturally occurring Tregs (nTregs) and TGF-ß-induced generation of Tregs (iTregs) from naive CD4+ Tcells was further examined.

RESULTS:

A novel dimeric proaporphine alkaloid, designated as distepharinamide (DSA) with a symmetric structure isolated from the stems of D. glaucescens, restrained the doxycycline (Doxy)-induced Foxp3-tGFP expression, decreased the half-life of Foxp3 mRNA as well as reduced the mRNA levels of chemokine receptors (CCR4, CCR8 and CCR10) in Jurkat T cells with inducible Foxp3-tGFP expression. In lymphocytes or purified Tregs from wild-type C57BL/6 mice or from C57BL/6-Tg(Foxp3-DTR/EGFP)23.2Spar/Mmjax mice, DSA markedly inhibited TNF-induced proliferative expansion of Tregs present in the unfractionated CD4+ T cells, accompanied by the down-regulation of TNFR2, CD25 and CTLA4 expression on Tregs. Furthermore, DSA potently inhibited TGF-ß-induced differentiation of Foxp3-expressing iTregs. Importantly, the expression of Foxp3 mRNA by both nTregs and iTregs was decreased by DSA treatment. Nevertheless, DSA at the same concentrations did not inhibit the proliferation of conventional CD4+ and CD8+ T cells stimulated by anti-CD3/CD28 antibodies.

CONCLUSION:

DSA, a novel dimeric proaporphine alkaloid, potently inhibited the expansion of nTregs and generation of iTregs. Therefore, DSA or its analogs may merit further investigation as novel immunotherapeutic agents.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Biological Products / Alkaloids / Antineoplastic Agents Type of study: Prognostic_studies Limits: Animals Language: En Journal: Phytomedicine Journal subject: TERAPIAS COMPLEMENTARES Year: 2022 Document type: Article Affiliation country: China

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Biological Products / Alkaloids / Antineoplastic Agents Type of study: Prognostic_studies Limits: Animals Language: En Journal: Phytomedicine Journal subject: TERAPIAS COMPLEMENTARES Year: 2022 Document type: Article Affiliation country: China