Particle size effect on millimeter-wave absorption, rotation, and ellipticity of gallium-substituted epsilon iron oxide.
RSC Adv
; 12(42): 27125-27130, 2022 Sep 22.
Article
in En
| MEDLINE
| ID: mdl-36275997
Various applications employ millimeter waves. For example, the carrier frequencies of vehicle radar in advanced driver assistance systems are 76-81 GHz millimeter waves. Here, we investigate the particle size effect on millimeter-wave absorption of gallium-substituted epsilon iron oxide ε-Ga x Fe2-x O3 with x = 0.44 ± 0.01. Samples were composed of nanoparticles with sizes of 16.9(1) nm, 28.8(2) nm, and 41.4(1) nm. Millimeter wave absorption, Faraday rotation, and Faraday ellipticity were measured by terahertz time-domain spectroscopy. This series exhibits millimeter-wave absorption at 78.7, 78.2, and 77.7 GHz without an external magnetic field. The millimeter-wave absorption increases from 4.6 dB to 9.4 dB as the particle size increases. In the magnetized sample, the Faraday rotation angle increases from 9.1° to 18.4°, while the Faraday ellipticity increases from 0.27 to 0.52. The particle size effect can be explained by the change in the ratio of the surface and core of the nanoparticles. The present study should contribute to the realization of high-performance millimeter-wave absorbers.
Full text:
1
Collection:
01-internacional
Database:
MEDLINE
Language:
En
Journal:
RSC Adv
Year:
2022
Document type:
Article
Country of publication:
United kingdom