Your browser doesn't support javascript.
loading
Seeing and extrapolating motion trajectories share common informative activation patterns in primary visual cortex.
Agostino, Camila Silveira; Merkel, Christian; Ball, Felix; Vavra, Peter; Hinrichs, Hermann; Noesselt, Toemme.
Affiliation
  • Agostino CS; Department of Biological Psychology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.
  • Merkel C; European Structural and Investment Funds-International Graduate School (ESF-GS) Analysis, Imaging, and Modeling of Neuronal and Inflammatory Processes (ABINEP) International Graduate School, Otto-Von-Guericke-University, Magdeburg, Germany.
  • Ball F; Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany.
  • Vavra P; Department of Biological Psychology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.
  • Hinrichs H; Centre for Behavioural Brain Sciences, Otto-von-Guericke-University, Magdeburg, Germany.
  • Noesselt T; Department of Biological Psychology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.
Hum Brain Mapp ; 44(4): 1389-1406, 2023 03.
Article in En | MEDLINE | ID: mdl-36288211
The natural environment is dynamic and moving objects become constantly occluded, engaging the brain in a challenging completion process to estimate where and when the object might reappear. Although motion extrapolation is critical in daily life-imagine crossing the street while an approaching car is occluded by a larger standing vehicle-its neural underpinnings are still not well understood. While the engagement of low-level visual cortex during dynamic occlusion has been postulated, most of the previous group-level fMRI-studies failed to find evidence for an involvement of low-level visual areas during occlusion. In this fMRI-study, we therefore used individually defined retinotopic maps and multivariate pattern analysis to characterize the neural basis of visible and occluded changes in motion direction in humans. To this end, participants learned velocity-direction change pairings (slow motion-upwards; fast motion-downwards or vice versa) during a training phase without occlusion and judged the change in stimulus direction, based on its velocity, during a following test phase with occlusion. We find that occluded motion direction can be predicted from the activity patterns during visible motion within low-level visual areas, supporting the notion of a mental representation of motion trajectory in these regions during occlusion.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Visual Cortex / Motion Perception Limits: Humans Language: En Journal: Hum Brain Mapp Journal subject: CEREBRO Year: 2023 Document type: Article Affiliation country: Germany Country of publication: United States

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Visual Cortex / Motion Perception Limits: Humans Language: En Journal: Hum Brain Mapp Journal subject: CEREBRO Year: 2023 Document type: Article Affiliation country: Germany Country of publication: United States