Your browser doesn't support javascript.
loading
Prediction of violence in male schizophrenia using sMRI, based on machine learning algorithms.
Yu, Tao; Pei, Wenzhi; Xu, Chunyuan; Zhang, Xulai; Deng, Chenchen.
Affiliation
  • Yu T; Anhui Mental Health Center; Affiliated Psychological Hospital of Anhui Medical University; Hefei Fourth People's Hospital; Anhui Clinical Research Center for Mental Disorders, Hefei, 230022, Anhui, China.
  • Pei W; Anhui Mental Health Center; Affiliated Psychological Hospital of Anhui Medical University; Hefei Fourth People's Hospital; Anhui Clinical Research Center for Mental Disorders, Hefei, 230022, Anhui, China.
  • Xu C; Anhui Mental Health Center; Affiliated Psychological Hospital of Anhui Medical University; Hefei Fourth People's Hospital; Anhui Clinical Research Center for Mental Disorders, Hefei, 230022, Anhui, China.
  • Zhang X; Anhui Mental Health Center; Affiliated Psychological Hospital of Anhui Medical University; Hefei Fourth People's Hospital; Anhui Clinical Research Center for Mental Disorders, Hefei, 230022, Anhui, China. 479800330@qq.com.
  • Deng C; Anhui Province Maternity & Child Health Hospital, Hefei, 230022, Anhui, China. 337217409@qq.com.
BMC Psychiatry ; 22(1): 676, 2022 11 01.
Article in En | MEDLINE | ID: mdl-36320010
BACKGROUND: Violent behavior in patients with schizophrenia (SCZ) is a major social problem. The early identification of SCZ patients with violence can facilitate implementation of targeted intervention. METHODS: A total of 57 male SCZ patients were recruited into this study. The general linear model was utilized to compare differences in structural magnetic resonance imaging (sMRI) including gray matter volume, cortical surface area, and cortical thickness between 30 SCZ patients who had exhibited violence and 27 SCZ patients without a history of violence. Based on machine learning algorithms, the different sMRI features between groups were integrated into the models for prediction of violence in SCZ patients. RESULTS: After controlling for the whole brain volume and age, the general linear model showed significant reductions in right bankssts thickness, inferior parietal thickness as well as left frontal pole volume in the patients with SCZ and violence relative to those without violence. Among seven machine learning algorithms, Support Vector Machine (SVM) have better performance in differentiating patients with violence from those without violence, with its balanced accuracy and area under curve (AUC) reaching 0.8231 and 0.841, respectively. CONCLUSIONS: Patients with SCZ who had a history of violence displayed reduced cortical thickness and volume in several brain regions. Based on machine learning algorithms, structural MRI features are useful to improve predictive ability of SCZ patients at particular risk of violence.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Schizophrenia Type of study: Prognostic_studies / Risk_factors_studies Aspects: Determinantes_sociais_saude Limits: Humans / Male Language: En Journal: BMC Psychiatry Journal subject: PSIQUIATRIA Year: 2022 Document type: Article Affiliation country: China Country of publication: United kingdom

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Schizophrenia Type of study: Prognostic_studies / Risk_factors_studies Aspects: Determinantes_sociais_saude Limits: Humans / Male Language: En Journal: BMC Psychiatry Journal subject: PSIQUIATRIA Year: 2022 Document type: Article Affiliation country: China Country of publication: United kingdom