Your browser doesn't support javascript.
loading
A round-robin approach provides a detailed assessment of biomolecular small-angle scattering data reproducibility and yields consensus curves for benchmarking.
Trewhella, Jill; Vachette, Patrice; Bierma, Jan; Blanchet, Clement; Brookes, Emre; Chakravarthy, Srinivas; Chatzimagas, Leonie; Cleveland, Thomas E; Cowieson, Nathan; Crossett, Ben; Duff, Anthony P; Franke, Daniel; Gabel, Frank; Gillilan, Richard E; Graewert, Melissa; Grishaev, Alexander; Guss, J Mitchell; Hammel, Michal; Hopkins, Jesse; Huang, Qingqui; Hub, Jochen S; Hura, Greg L; Irving, Thomas C; Jeffries, Cy Michael; Jeong, Cheol; Kirby, Nigel; Krueger, Susan; Martel, Anne; Matsui, Tsutomu; Li, Na; Pérez, Javier; Porcar, Lionel; Prangé, Thierry; Rajkovic, Ivan; Rocco, Mattia; Rosenberg, Daniel J; Ryan, Timothy M; Seifert, Soenke; Sekiguchi, Hiroshi; Svergun, Dmitri; Teixeira, Susana; Thureau, Aurelien; Weiss, Thomas M; Whitten, Andrew E; Wood, Kathleen; Zuo, Xiaobing.
Affiliation
  • Trewhella J; School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia.
  • Vachette P; Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Paris, 91198 Gif-sur-Yvette, France.
  • Bierma J; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA.
  • Blanchet C; European Molecular Biology Laboratory (EMBL) Hamburg Unit, Notkestrasse 85, c/o Deutsches Elektronen-Synchrotron, 22607 Hamburg, Germany.
  • Brookes E; Chemistry and Biochemistry, University of Montana, 32 Campus Drive, Missoula, MT 59812, USA.
  • Chakravarthy S; BioCAT, Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL 60616, USA.
  • Chatzimagas L; Theoretical Physics and Center for Biophysics, Saarland University, Campus E2.6, 66123 Saarbrücken, Germany.
  • Cleveland TE; Institute for Bioscience and Biotechnology Research, 9600 Gudelsky Drive, Rockville, MD 20850, USA.
  • Cowieson N; Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom.
  • Crossett B; Sydney Mass Spectrometry, The University of Sydney, Sydney, NSW 2006, Australia.
  • Duff AP; Australian Nuclear Science and Technology Organisation, New Illawara Road, Lucas Heights, NSW 2234, Australia.
  • Franke D; European Molecular Biology Laboratory (EMBL) Hamburg Unit, Notkestrasse 85, c/o Deutsches Elektronen-Synchrotron, 22607 Hamburg, Germany.
  • Gabel F; Institut de Biologie Structurale, CEA, CNRS, Université Grenoblé Alpes, 41 Rue Jules Horowitz, 38027 Grenoble, France.
  • Gillilan RE; Cornell High-Energy Synchrotron Source, 161 Synchrotron Drive, Ithaca, NY 14853, USA.
  • Graewert M; European Molecular Biology Laboratory (EMBL) Hamburg Unit, Notkestrasse 85, c/o Deutsches Elektronen-Synchrotron, 22607 Hamburg, Germany.
  • Grishaev A; Institute for Bioscience and Biotechnology Research, 9600 Gudelsky Drive, Rockville, MD 20850, USA.
  • Guss JM; School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia.
  • Hammel M; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA.
  • Hopkins J; BioCAT, Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL 60616, USA.
  • Huang Q; Cornell High-Energy Synchrotron Source, 161 Synchrotron Drive, Ithaca, NY 14853, USA.
  • Hub JS; Theoretical Physics and Center for Biophysics, Saarland University, Campus E2.6, 66123 Saarbrücken, Germany.
  • Hura GL; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA.
  • Irving TC; BioCAT, Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL 60616, USA.
  • Jeffries CM; European Molecular Biology Laboratory (EMBL) Hamburg Unit, Notkestrasse 85, c/o Deutsches Elektronen-Synchrotron, 22607 Hamburg, Germany.
  • Jeong C; Department of Physics, Wesleyan University, Middletown, CT 06459, USA.
  • Kirby N; Australian Synchrotron, ANSTO, 800 Blackburn Road, Clayton, VIC 3158, Australia.
  • Krueger S; National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA.
  • Martel A; Institut Laue-Langevin, 71 Avenue des Martyrs, 38042 Grenoble CEDEX 9, France.
  • Matsui T; Stanford Synchrotron Radiation Lightsource, Stanford University, 2575 Sand Hill Road, Menlo Park, CA 94025, USA.
  • Li N; National Facility for Protein Science in Shanghai, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Road No. 333, Haike Road, Shanghai 201210, People's Republic of China.
  • Pérez J; Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin BP 48, 91192 Gif-sur-Yvette, France.
  • Porcar L; Institut Laue-Langevin, 71 Avenue des Martyrs, 38042 Grenoble CEDEX 9, France.
  • Prangé T; CITCoM (UMR 8038 CNRS), Faculté de Pharmacie, 4 Avenue de l'Observatoire, 75006 Paris, France.
  • Rajkovic I; Stanford Synchrotron Radiation Lightsource, Stanford University, 2575 Sand Hill Road, Menlo Park, CA 94025, USA.
  • Rocco M; Proteomica e Spettrometria di Massa, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi 10, 16132 Genova, Italy.
  • Rosenberg DJ; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA.
  • Ryan TM; Australian Synchrotron, ANSTO, 800 Blackburn Road, Clayton, VIC 3158, Australia.
  • Seifert S; X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA.
  • Sekiguchi H; SPring-8, Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan.
  • Svergun D; European Molecular Biology Laboratory (EMBL) Hamburg Unit, Notkestrasse 85, c/o Deutsches Elektronen-Synchrotron, 22607 Hamburg, Germany.
  • Teixeira S; National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA.
  • Thureau A; Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin BP 48, 91192 Gif-sur-Yvette, France.
  • Weiss TM; Stanford Synchrotron Radiation Lightsource, Stanford University, 2575 Sand Hill Road, Menlo Park, CA 94025, USA.
  • Whitten AE; Australian Nuclear Science and Technology Organisation, New Illawara Road, Lucas Heights, NSW 2234, Australia.
  • Wood K; Australian Nuclear Science and Technology Organisation, New Illawara Road, Lucas Heights, NSW 2234, Australia.
  • Zuo X; X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA.
Acta Crystallogr D Struct Biol ; 78(Pt 11): 1315-1336, 2022 Nov 01.
Article in En | MEDLINE | ID: mdl-36322416
ABSTRACT
Through an expansive international effort that involved data collection on 12 small-angle X-ray scattering (SAXS) and four small-angle neutron scattering (SANS) instruments, 171 SAXS and 76 SANS measurements for five proteins (ribonuclease A, lysozyme, xylanase, urate oxidase and xylose isomerase) were acquired. From these data, the solvent-subtracted protein scattering profiles were shown to be reproducible, with the caveat that an additive constant adjustment was required to account for small errors in solvent subtraction. Further, the major features of the obtained consensus SAXS data over the q measurement range 0-1 Å-1 are consistent with theoretical prediction. The inherently lower statistical precision for SANS limited the reliably measured q-range to <0.5 Å-1, but within the limits of experimental uncertainties the major features of the consensus SANS data were also consistent with prediction for all five proteins measured in H2O and in D2O. Thus, a foundation set of consensus SAS profiles has been obtained for benchmarking scattering-profile prediction from atomic coordinates. Additionally, two sets of SAXS data measured at different facilities to q > 2.2 Å-1 showed good mutual agreement, affirming that this region has interpretable features for structural modelling. SAS measurements with inline size-exclusion chromatography (SEC) proved to be generally superior for eliminating sample heterogeneity, but with unavoidable sample dilution during column elution, while batch SAS data collected at higher concentrations and for longer times provided superior statistical precision. Careful merging of data measured using inline SEC and batch modes, or low- and high-concentration data from batch measurements, was successful in eliminating small amounts of aggregate or interparticle interference from the scattering while providing improved statistical precision overall for the benchmarking data set.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Proteins / Benchmarking Type of study: Guideline / Prognostic_studies Language: En Journal: Acta Crystallogr D Struct Biol Year: 2022 Document type: Article Affiliation country: Australia

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Proteins / Benchmarking Type of study: Guideline / Prognostic_studies Language: En Journal: Acta Crystallogr D Struct Biol Year: 2022 Document type: Article Affiliation country: Australia
...