Influence of single nucleotide polymorphism in the IGF-1 gene on performance and conformation traits in Munjal sheep.
Zygote
; 31(1): 70-77, 2023 Feb.
Article
in En
| MEDLINE
| ID: mdl-36384917
Genetic polymorphism research in livestock species aims to assess genetic differences within and among breeds, primarily for conservation and development objectives. The aim of the present study was to determine the point mutation in the IGF-1 gene (g.855G>C and g.857G>A) and its association with performance traits in Munjal sheep. In total, 50 Munjal sheep were selected and the genomic DNA was isolated using the Automated Maxell RSC DNA/RNA purification system and the Maxwell RSC whole blood DNA kit. A reported set of primers was used to amplify the 294-bp fragment encompassing the targeted region, i.e. the 5' flanking region of the IGF-1 gene. The polymerase chain reaction product of 294-bp size harbouring the g.857G>A mutation in the 5' flanking region of the IGF-1 gene was digested with HaeII enzyme. Three possible genotypes were defined by distinct banding patterns, i.e. GG (194, 100 bp), GA (294, 194, 100 bp) and AA (294 bp) in the studied population of Munjal sheep. The genotypic and allelic frequencies of g.857G>A single nucleotide polymorphism of the IGF-1 gene indicated that the frequency of the A allele was higher in the studied population, i.e. 0.59 and the GA genotype was found to be the predominant genotype (0.66). Allele A of the IGF-1 gene was found to be associated with higher body weights and can be used in selection criteria for improving the performance of Munjal sheep. The positive effect of the IGF-1 gene on several conformational traits as observed in this study suggests that this area of the ovine IGF-I gene is particularly important and warrants further investigation on a larger population size.
Key words
Full text:
1
Collection:
01-internacional
Database:
MEDLINE
Main subject:
Insulin-Like Growth Factor I
/
Polymorphism, Single Nucleotide
Limits:
Animals
Language:
En
Journal:
Zygote
Journal subject:
EMBRIOLOGIA
Year:
2023
Document type:
Article
Affiliation country:
India
Country of publication:
United kingdom